NHU-T-97-002 C3

LOAN COPY ONLY

AMP

Acoustic Mapping Probe

Undergraduate Ocean Research
Tech 797

University of New Hampshire
Durham, NH

Project Advisor: Dr. Kenneth C. Baldwin

AMP Team:
Christopher N. Pacheco, ME
Jason C. Gerry, EE
James P. Inglee, EE

New Hampshire/Maine
UNBMP-AR-S6-96-13



ABSTRACT

The design structure of the acoustic mapping probe
(AMP) stemmed from the need to express the under water sound
field from acoustic devices used in the fishing industry in
three dimensions to begin to understand how the marine
mammals interact with them. The system addressed this need
with a measurement sampling technique involving several
sensors. The design and sensor selection addressed the
pertinent parameters for mapping the sound field: depth,
differential global positioning system, temperature, and
- sound pressure level. With a unique software design created
specifically for the monitoring and controlling of the
sensors, AMP was capable of providing both real-time and
data logged information that can be used to accurately
portray the under water sound field in three dimensions.
AMP’' s unique design features were its portability and its

flexible user-friendly software.



Table of Contents

List of Figures ........ciiirritenrencnnacenannas
List of Tables .....iiiiitinennennneeneannncennas
I. Intreduction ...........0tiititieeinrcnnnanns
II. Design Criteria & Approach .........ccccu...
ITI. Sensor Specification & Selection............
IV. Data Acquisition .......iiutininrienncanans
Software Design........... e e e .
Acquisition .........iiicinnnnnnnn

Conversion .......icveeeeeecncnnae

User Level ........c..... srerreaa

Code Implementation ..............

General Program Flow ............

Signal Conditioning ..........0vcvuu...

Hardware ........cciititininnenncannens

V. Instrument Housing .......... Checasecanaans
Pressure Vessel .........cciveeeanneans

Sensor Location ........ccieiinninnnns

Cable .....ciiiiiiieinnnnnnns cr et s e

VI. Budget Considerations ..........cccuennunnee.
VII. Testing & Evaluation ............... PO
Cable ...... e e rcrereseatsnstanceennonn

Pressure SenSOr ... ..cveeevenneacennnas
Thermistor .......ciiiiimiemnnnnnnnnnnnn

Pressure Vessel ..........ciecncnennnn .

Software ........... reesantrsesessannase
VIII.SUMMATZY o veitcecsnnoacceanssssnnanssonsncnss
IX. References ........cecvmenenrennsanens seree
X. Appendices ......citciccttatnarre e

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
XI. Acknowledgments

User’s Manual ............

AMP Program: C code ...... '

Calculations .............
Hydrophone Specifications .
Pressure Specifications ..

---------------------------

102
109



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

List of Figures

#10:
#11:
#12:

"#13:

#14:
#15:

Hydrostatic Pressure Equation
Top-Down Software Functionality
Main Routine

Initialize DAS Device Function
Start Acquiring Function
Process Timer #2 Procedure

Get Data Function

Stop Acquiring Function

Open Connection Function
Process CommNotification Function
LatLong Function

Process Timer #1 Procedure

Data Translation Function

Release Driver Function

~AMP Housing and Cage

List of Tables

Page #

13
19
25
27
29
32
33
34
36
37
38
40
43
45
50

Table #1:
Table #2:

Summary of Design Approaches
AMP Cost Analysis

Page #

53



I. INTRODUCTION

The motivation for the AMP project has stemmed directly
from ongoing research into the behavior of marine mammals in
the presence of sound fields generated by acoustic devices
used in the fishing industry. The functionality designed
into AMP was driven by particular projects in the study of
harbor porpoises (Phoceona phocecna) and the impact on the
harbor porpcocise population due to inadvertent entanglement
in gill nets.

In previous research, a device was designed to be
placed on the gill nets used in commercial fishing, to keep
harbor porpoises both aware of and away from the gill nets.
This device was designed to keep porpoises from becoming
entangled in the nets that eventually drowns the porpoise.
Other devices have subsequently been designed by commercial
vendors and field tested in rigorous experimental conditions
(Kraus etal. 1995). Questions surfaced as a result of
research concerning whether or not the porpoises were
responding positively to the pinging devices in such a
manner as to avoid the nets, and concerning the.potential
for environmental noise problems and habitat exclusion. The
goal of AMP was to produce a device which was capable of

obtaining the sound field information produced by the



pingers, and to ultimately check for positive responses from

the harbor porpoises.

AMP was designed to acquire data so the data can be used to
map a given sound field in the sea within a broad fregquency
spectrum {(currently 4kHz to 166kHz). AMP was a device
designed to acquire the proper data for assessing this three
dimensional sound field. These data needs included
acquiring data from a hydrophone for acoustical properties
at a particular location; acquiring the position of the
signal using a depth transducer and a Global Positioning
System; and acquiring water temperature. These data were
needed to map the sound field and to provide a useful data
base for future acoustic propagation modeling. All data
acquired then needed to be stored for further analvsis and
displayed for real time "field" observations with an easy to
use interface for quickly acquiring data. This system also
had to be portable. This portability issue included
producing a system that was manageable by one or two
operators.

AMP was designed as a computer oriented instrumentation
probe sysfem which can acquire, store and display all the
necessary information needed to three dimensionally plot an
acoustic sound field. Along with the need to complete this

project for a solution to this immediate situation, the



design team was able to design AMP with enough flexibility

to be used in many other ocean acoustic applications.

II. Design Criteria and Approach

The purpose of this project was to create a functional
device capable of 3-dimensionally mapping the sound field in
a fluid medium. In accomplishing this task, it was
necessary to address the following parameters:
I. Portability
ITI. Acoustic properties and characteristics

A. Frequency ranges

B. Temperature effects

III. Depth of operation

i. Pressure housing

B. Pressure transducer
1. Cable
2. Bio-fouling

IV. Output of data acgquisition

A. Sound

B. Location

C. Time

D. Temperature
E. Depth

F. Data files

G. Analog/Digital conversion




To meet the project's requirements, the design team focused
on the necessary measurement devices, mechanical properties,
electrical properties, and software design. The governing
criteria for the design of the probe was the portability
issue. The issues that were first addressed were those of
the proper measurement devices. The properties that were
necessary to measure were those of time, temperature, depth,
position in latitude and longitude, and the sound pressure
level. It was then necessary to design a device capable of
containing these devi;es along with a method of deployment
and recovery. Several design alternatives were developed
and evaluated for the most reliable data acquisition system.
The advantages and disadvantages of each design alternative
were then researched to decide on the most practical, cost
effective, re;iable design. These design alternatives are

summarized in Table 1.



Table #1:

Summary of Design Approaches

Design Alternative

Advantages

Disadvantages

I. Self Contained
Unit

1. No cabling to
surface

2. No equipment
above the surface
3. Portable and
easy To use

1. ExXpensive

2. No Real Time
Functionality

3. Limits amount of
data acquired

4. High power

consumption
II. Data 1. Real Time 1. RS232 cable to
Transmitted functionality surface
Digitally 2. Minimize signal |2. Reduces
noise portability
3. Less expensive 3. High power
cabling consumption
4. Still expensive
III. Data l. Low power 1. Signal Noise

Transmitted Analog | consumption 2. Expensive
2. Real time cabling
functionality 3. Reduces

portability

It was apparent the system would require a computer

integrated program to monitor and control the

instrumentation.

Because of the portability issue,

the group decided to make

the unit as compact as possible so its field operation was

not a laborious task.

This required a system that had

minimal power requirements, was easily deployed and

recovered,

and could be operated by one person.

This

portability requirement governed the selection of all of the

measurement devices as well as the method for data

acquisition.

It was decided to design a small probe to




which the necessary instrumentation was fastened. The idea
was to activate the probe and lower it into the water column
where it would acquire data. This data would then be
analyzed back at a laboratory. The initial design was to
build a self contained unit. The device contained all of the
hardware necessary to acquire and store the data within the
pressure vessel. This contributed to the portability
criteria of the design as there was no need for a cable to
transmit data to the surface. The only requirement was for
a PC to initiate the profiling operation. A single person
in a small boat would then have the ability to take data

measurements with little difficulty.

As time progressed in AMP development, some of the project
necessities changed which altered the probe’s design. The
portability issue remained however, there became more of an
interest for real time data retrieval. The real-time
functionality issue was decided on because it was of
interest to the user. This design change allowed the usef
to monitor the data as it was recorded for its practicality
and relative validity. It also allowed for more data to be
collected on the surface because the data acquisition was no
longer dependent on the memory in the probe. This desién
change resulted in the necessity for a cable to transfer the

data from the probe to the user at the surface. This

10



reduced the amount of hardware within the probe. However,
it required more equipment including another power supply on
the surface. This reduced the probe's portability. The use
of a cable originally resolved the low power instrumentation
requirement within the probe until it was discovered that
the power signal would add undesirable electrical noise to
the system as it transmitted from the surface to the probe.
To eliminate this noise, it was decided to place a DC power
supply in the probe. The DC power supply limited the

instrumentation selection to low power DC sensors.

Some of the first major issues that the group addressed were
system integration and probe assembly. The original design
of the acoustic mapping probe (AMP) incorporated three
different hydrophones to monitor the entire frequency range
of 500Hz - 180kHz. The three hydrophones monitored
information for their given bandwidths. After acquiring and
allocating this data in three different files, the
information was stored for further data manipulation. The
bandwidths of the three phones overlapped each other so it
was not possible to miss any of the required bandwidth. The
process of locating three hydrophones that fit within the
budget constraints proved to be unsuccessful. Fortunately,
this design changed when the group discovered a broad band

hydrophone capable of covering a vast maiority of the

11



required frequencies. It was decided to utilize this broad
band hydrophone as this eliminated the possibility of
missing data as well as reduced the number of conductors
required for the cable. Reducing the number of hydrophones
from three to one also simplified mounting and physical
spatial problems. Finally, using only one hydrophone also

reduced the power requirement.

The idea of mapping the sound field required that the probe
was capable of recording its position in three dimensional
Cartesian coordinates. To accomplish this requirement, the
group needed to record both pbsition in latitude and

longitude as well as its height in the water column.

After researching a great deal on acoustics, the design team
decided that it was important to incorporate a temperature
measuring device into the system as varying temperatures
greatly effect underwater acoustics. The research presented
information stating some of the effects of temperature on
sonar transmissions. For instance, the shadowing effects of

the thermocline and the acoustic velocity variations with

-temperature (see Urick, Principles of Underwater Sound).

The depth issue was resolved utilizing a pressure transducer

and the hydrostatic pressure equation (see Figure 1).

12



h = height
h=i P = pressure
pg p = density of sea water
g = gravity

Figure 1. Hydrostatic pressure eguation.

Note, the pressure measurements were acquired using an
approximated still water level (waves were not accounted for
in the depth calculation). Issues concerning the pressure
transducer consisted of pressure, sensitivity, power, size
and hardware mounting. The sensitivity and depth issues for
the transducer greatly effected the cost. The group found
that the deeper and more sensitive the transducer, the
higher its cost. The mounting issue required a transducer
that could be fixed to a small probe. The power issue for

the transducer was that it ran on a low voltage dc signal.

The controller issue was one of great significance to the
success of the AMP design. Preliminary designs sought to
implement an A/D converter inside the pressure vessel and
store the data inside the probe. As the real-time
requirement was developed, it was decided that the signal
had tc be transmitted to the surface computer for storage.
However, this idea was terminated by the fact that unaided
digital communication was limited to approximately 50 feet.

It was then decided to transmit an amplified analog signal

13



to the surface. This required the location of the A/D
converter to be at the surface. However, it was found that
the original A/D converter was not fast enough to sample at
the desired rate. This design change resulted in a faster

more efficient means of data acquisition.

The cable selection was one that changed throughout the
development of the probe. Originally, the only cable
requirement was a mechanical strength member to lower the
probe into the water column. However, after the real-time
issue was addressed, the cable requirements changed. The
new cable requirement was to transmit a digital signal on
RS-232 cable to the surface. As the group performed the
cable selection, it was discovered that the transmission
along RS5-232 over 500 ft of cable was impossible without the
use of repeaters. The repeaters required both power sources
and water sealing. The group then addressed the possibility
of using fiber-optic cable. The fiber optic cable resolved
the repeater dilemma however, due to the portability
parameter, this idea was dropped as the fiber-optic cable
required a minimum bend radius of several feet which
involved a difficult deployment and recovery operation. The
data acquisition portion of the design changed for its final

time to a system that required the use of an analog cable.

14



This meant using an electro-mechanical cable for the data

transmission.

The cable now required individual conductors for each
sensor. The idea of multiplexing, although possible as the
signals Qere of different frequencies, was not pursued due
to its complexity. To increase noise reduction and the
possibility of cross talk in the conductors, it was decided
to use three twisted shielded pairs. This would provide
each sensor with its own individual ground as well as
individual sensor signal shielding. The mechanical aspect
of the cable proved to be one of many complications. The
strength member was definitely a necessity as the cable
alone was not capable of supporting the weight of the probe.
Ideally, it was desired to have one cable that incorporated
both the required electrical characteristics as well as the
mechanical requirements. This idea proved to be a costly
one which forced the group to switch to an electrical cable
tethered to a rope for a strength member. Finally, the
group received a generous donation of electrical cable. It
was then decided that the necessary strength member would be

a polyethylene rope.

Time of the recorded events was not a design requirement

however, the group decided that it would aid in determining

15



both the actual time of and the duration of each recorded
event. The time record came from the internal clock of the

computer.

The power supply for the system changed throughout each
stage of the design. Originally, it was a small DC supply
of 9 Volt batteries to power the entire compact system.
Then, the option presented itself to utilize power from the
surface tco power the probe. This idea, as stated
previously, was short lived and eventually the power supply
was divided between the probe instrumentation power and the
PC power. TheApower for the probe was supplied by a battery
pack consisting of 9 Volt batteries connected in a series
circuit. The PC power came from a 12 Volt battery and an AC

rectifier.

III. SENSOR SPECIFICATION AND SELECTION

The sensor selection was a direct result of the final design
apprcach of the AMP system. The specifications for the
selection were set by the design criteria. The sensor
selection was greatly influenced by the availability of, and

salvageability of, functional hardware.

16



Hydrophones

The broad band hydrophone was originally salvaged from a
former project. The hydrophone was performing adequately
considering its physical appearance until an accident
occurred in a tank test during which the hydrophone pre-
amplifier combination was soaked. To resolve this problem
the group looked to purchasing a new hydrophone. This
accident occurred late in the development of the system
which greatly limited the pufchasing process. Fortunately,
the group located and ordered a new hydrophone from Spartan
Electronics, which is the hydrophone presently used in the
AMP system. The hydrophone has a pre-amplifier for
impedance matching and driving the cable. The frequency
range of the hydrophone/pre-amplifier device utilized by the
AMP system covers the broad band of 4 kHz - 166 kHz. The
sensitivity of the device was -155 dB and +/- 3 dB across
the entire range with a resonance frequency of approximately
140 kHz (see Appendix D). The pre-amplifier required a 5

Volt power supply.

Temperature
The issue of temperature measurements was addressed by
implementing a thermistor into the system. Because the fluid

for which the system was designed was ocean water, the

17



necessary temperature range varied from 0°C to 30°C. The
thermistor used by the probe was salvaged from a damaged
Endeco current meter. The device operates on changing

resistance due to temperature changes.

Depth/Position

The depth measurement was taken using a pressure transducer
and the hydrostatic pressure equation. The pressure
transducer was purchased from Keller PSI. The device had a
static accuracy of .25% (see Appendix E). The device
consisted of a piezoelectric transducer that generated a
current corresponding to a certain pressure while the
crystal was displaced. The pressure transducer was powered
by a 9-30 Volt power supply and had a 5 Volt DC output. The
transducer was also equipped with a vent filter for water
absorption. The pressure transducer’s operating range was
from 0 to 250 psi which was the operating range set by the

design specifications.

The latitude/longitude positioning system used by AMP was a
Differential Global Positioning System (AGPS). The AGPS

provided accurate 2-dimensional positioning to within 5 - 10
meters of the actual site. Raw data was taken from the

device and incorporated into the software of the AMP system.

18



Iv. Data Acquisition

The method of acquiring data in the AMP system used
measurement devices that were monitored by a computer.
Software in the computer was used for the data storage and
data displaying of the recorded information.

Software Design

The software portion of AMP presented many challenges in
design and implementation. The software in AMP can be
considered an information “manager." AMP's main purpose was
to acquire information from the hydrophone, depth and
temperature sensors as well as the GPS system, and convert
this information into useable data. The software was
responsible for the storing of this data as well as
displaying this information to the user. BAMP waé designed
to accept user input for the configuration of AMP's data
acquiring tasks. Figure 2 presents the general processes

involved in the AMP code, in an overall top- down view

[ User input ] E‘ile Stomge&Updale} [ Data Display ] of the AMP

\\\N_ _ﬂ//j functionality. The
[“ﬂzi;:___‘\\\ functionality can

Software
“Infomation Maﬁer”

//’,_:MH______”,g*‘\\\ be breoken into two
main sections.
[Global Positioning Systeﬂ [Analog 1o Digital ConverterJ
Data

~ 1
=) ) (D

Figure Z. Top down view of AMP functionality.

19



The pseudo processes on the top of the diagram was
manipulation of the data for use in analysis. This use,
included cbtaining data from the user to set up operations
and specifications of the software. {(User specifications
are discussed in Appendix A, the AMP users guide). File
storage and File update took translated data and stored the
data into files for future use and analysis. The Data
display gave a real-time display of the data for “in field”

observations and for data checking and assurance.

The data collection portion of the software included all the
operations necessary to obtain data from the external
systems used. These systems included the Global Positioning
System (GPS) and the sensors connected to the Analog to

Digital (A/D) converter.

Acquisition

Acquisition was completed in a linear process. Temperature
and depth data were acquired initially and then GPS data
were obtained. These data were then filtered and translated
by the AMP software for analysis. The hydrophone was then
sampled. The hydrophone was handled independently due to
the large amount of samples. Therefore, a large amount of

data needed to be handled by AMP.

20



AMP was set up to handle millions of samples at a time. The
ability to handle large sums of sampled data also created
the need for this sampling process and data translation to
take place separate to all other procedures to maximize
efficiency. The actual functionality of the acquisition of
data can be seen in the following pages in the flow charts
provided. The main procedure which handled the acquisition
functionality was the “GET DATA” function. It was here that
the necessary functions were called to accomplish all of the

above tasks.

Conversion

Once the necessary data were acquired the AMP software
converted the data into a recognizable format. The GPS data
were acquired through the Communications port of the
computer and were then stripped of unwanted data. There was
a large amount of excess data that were received from the
GPS system, these data were unnecessary for AMP’s purpose
and were parsed so as to leave the latitude and longitudinal
coordinates of the system. These data were then stored into
character strings until there was a need for it to be
accessed. The depth and temperature sampled readings at
this time were converted from a sampled voltage signal to a
recognizable format. Temperature was converted to

Farenheight and depth was converted to meters. The voltage

21



voltage to temp and voltage to depth were calibrated and the

specific conversion code was placed in the software.

The hydrophone data remained as voltage values. These data
were used to create a sound pressure level (SPL) value.
This SPL value and the independent sampled values were then

stored and displayed accordingly.

Usar Level

The user level included all the AMP procedures that were not
transparent to the user. Here the user was presented with
the options to configure the AMP software. These options
were generally set before any actual data Acquisition took
place. Once the user configured all of the options and the
acquisition process occurred, further user level procedures

occurred.

After data passed through the conversion level, two main
processes occurred. The first involved the real time
display of data. One window displayed the latitude and
longitude received from the GPS, the depth of the probe,

the temperature of the water at probe depth, as well as
time, and the sound pressure level of the sampled hydrophone
data. The second window displayed the first 1000 samples

that the hydrophone acquired. The second window display was

22



simply used as a check for the end user. This gave the user
a view of the data the hydrophone was receiving. The group
chose not to display the entire sampled data for several
reasons. For one, the computing time and memory used to
display the data were an inefficient use of resources, and
observing the samples in a real-time fashion was not useful

in any data analysis situation.

In the file storage portion of the code, two files were
created. One file contained the GPS, depth, temperature,
time & SPL. The other file contained solely the sampled
hydrophone data. The data were stored from the user input
prefix file. For example, if the input was “test”, the AMP
program created one file named “test.txt” which contained
the GPS data etc. AMP also created a set of incrementing
files starting at “test hyd.1” and incrementing the file

name for each group of hydrophone samples taken.

Code Impleﬁentation

AMP was created in the Windows ver3.1l environment. This
environment was beneficial for programming. The resources
existed to implement the code in Windows. It provided for
an intuitive feel and use of a computer. Most importantly,
the Keithley A/D board was designed to work well in this

environment. The board has memory managers and drivers

23



designed for the Windows environment. The functionality of
the code can best be seen in the flow chart on the following
pages (see Figures 3-14). These flow charts give an
excellent in detail view of the procedures described above,
without going into the windows coding overhead. There was a .
large amount of Window’s background processing occurring,
that the code handled, but was not necessary to show in
order to get the feel for the code. (If it is necessary to

view this information, see the code in Appendix B.)

General Program Flow

Throughout the design, the group visualized the general
program flow of the Acoustic Mapping Probe software by using
the flow charts seen in Figures 3-14. It was easier to
analyze the various routines separately. This was
accomplished by tracing through the program beginning with
the initial execution and then following the execution of

- the various subroutines throughout the completion of the
programs task. This helped to better understand the general

program flow of the AMP software.

Upon execution of the initial stages of the software, the
operating system followed the Main Routine procedure
outlined in Figure 3. The purpose of this routine was to set

up the user interface, and initialize the program such

24



Figure # 3: Main Routine

[ Define message structure &
Get handle of instance
Register window classes

U

Create applications Main |
Window - Dialog Box

<

Display Dhalog box &
initialize default window
fields for acquisition parameters §

O

Initialize the Keithley
DAS-1802HC A/D
device

Clean up before exiting 2

application

@No

Translate Message and

Dispatch Message

25



that it integrated itself into the Windows Operating System,
It started with taking care of general Window procedures
which were not specific to the AMP software (any program
that operates in Windows must follow these initial.steps).
These procedures included defining a message structure,
retrieving the handle of the instance, registering the
Window classes, creating the applications main window, and

initializing the displayed dialog box.

The Main routine then initialized the Keithley DAS-1802HC
A/D device by calling the routine seen in Figure 4. 1In this
subroutine, the program locaded the DAS-1802 device driver
and checked to see if the driver was already loaded. If the
device driver was already loaded, then it displayed an
appropriate error message to the user and asked if it was
okay to use the previous configuration of the device. If
the user did not wish to use the previous configuration of
the device, the driver would not be loaded, and the program
terminated normally. However, if the previous configuration
was implemented, the program proceeded to get a handle for
the device, and the A/D frame handle for the Direct Memory
Access (DMA) mode operation (Refer to Keithley Manual). The

DAS initialization subroutine then returned to the Main

Routine.

26



Figure #4: Initialialize DAS Device:

Open the DAS-1802
Device Driver

Display error message

Use

Get an AD frame for
DMA mode

27



After the initialization was complete, the Main Routine took
care of the message handling for the program instance. 2all
messages were translated by the operating system and
dispatched to the Main Windows Procedure. This was seen as
a series of “switch” statements in the attached code (see
Appendix B). This procedure provided service routines for
the Windows events as well as the user initiated events
within the program. It continued to translate and dispatch
commands until a “quit” message was received and the program

was terminated.

The AMP software was now initiated and awaited the
interaction of the user. Once the user entered the
appropriate parameters to start the acquisition process (see
User'’s Manual for details in Appendix B), the Start
Acquiring function was initiated by clicking on the Start
Button (the Start Acquiring subroutine can be seen in Figure
5). The purpose of this routine was to configure the A/D
device with the parameters defined by the ﬁser. Initially,
the start time was retrieved, the stop button was enabled,

and the start button was disabled. This ensured that the

28



Figure #5: Start Acquiring
Enable stop button & disable f
start button.
Get Sample time & sampling
ate (Hz)

Determine the #
of samples and #
of buffers to allocate

U

Set the hydrophone
channel & Gain for the

A/D input

Set the sampling rate
of the A/D converter

O

Set continuous
or single cycle mode

O

Get the sample interval
time and initialize timer. B
Initialize status flags

~ Call Get_Data function

to acquire initial data set

29



user did not attempt to begin another Start Acquiring
subroutine until after the stop button was pressed. This

would have caused an error to occur.

Next, the Sample Time Parameters - Sample Interval, Sample
Time and Sample Rate, were retrieved from the user
interface. The Sample Interval was used to set the value of
Timer Procedure 2 (note: this will be discussed later). The
Sample Time and Sample Rate allowed the program to determine
the total number of samples, and, in turn, determine the
number of buffers to allocate in memory for the DMA mode
operation. Allocating multiple buffers allowed the A/D
device to sample continuously over the Sample Time.

However, there were a few limitations, such as the maximum
buffer size and the maximum number of buffers that could be
allocated. These defined the limits on the user defined
input for the Sample Time Parameters. (See Keithley manual
for more details). The A/D channel, gain, and sampling
rate for the hydrophone input were retrieved and set to the
user defined parameters. This allowed the user to connect
the hydrophone, thermistor, and pressure transducer to any
channel, as well as to determine the gain used for each

channel making the program more versatile.

30



The software then determined from the user interface whether
the A/D mode should be set to Continuous or Single Cycle
Mode. 1In Continuous Mode, the A/D continuously sampled the
hydrophone channel. It filled the allocated memory space
and then overwrote it until the user pressed the stop
button. This was useful for random sampling, in which one
did not want the Sample Time Parameters to have any affect.
The Single Cycle Mode filled the allocated buffers and then
stopped automatically when the buffer was full. This was
useful for the user to set the Sample Time Parameters to
take multiple timed samples at fixed intervals for an

extended period of time.

At the end of the Start Acquiring subroutine, the Process
Timer 2 Procedure was initialized using the Sample Interval
parameter defined by the user. The timer placed a message
on the message queue each time the interval time elapsed.
The message was then handled by the Main Window Procedure
which was instructed to call the Process Timer #2 Procedufe
seen in Figure 6. Each time the Process Timer #2 Procedure
was called, it determined the total elapsed recording time.
If the elapsed time was less than the total desired sample
time, then the Get Data function was called to get another
data set (this procedure can be seen in Figure 7). If the

elapsed sample time exceeded the total desired sample time,

31



Figure #6: Process Timer #2 Procedure

Get the current time &
determine the elapsed
time

Call Stop Acquiring
Function & Retum

elapsed time
> sample
time

'No

Call Get Data function |

& Return

32



Figure #7: GetData Function

Get the A/D channel &
of the Pressure
transducer

O

Read single sample
from PressureTransducer |
A/D channel

U

Get the A/D channel

of the Thermistor

O

Read single sample
from the thermistor
A/D channel

U

Get the Differential

GPS data

L

Allocate buffers

Start the A/D converter
to sample the hydrophone f

U

Start a 10ms timer to
monitor status of the

hydrophone sampling

33



the Stop Acquiring function was called (see Figure 8). This
function allowed the user to define a total desired sample

time, and take samples at fixed intervals.

Figure #8: Stop Acquiring Function

Enable Start button &
disable Stop button.
Update status box to inactive

Kill Timer procedures §

Stop the DMA mode
A/D operation

When the Get Data function was called, the program preceeded
to acquire ancther data set. Initially, the A/D channel of
the pressure transducer was retrieved from the user

interface. The channel was sampled once to acquire the

34



current pressure data from the pressure transducer which was
then stored in memory. The A/D channel of the thermistor
was then retrieved from the user interface. A single A/D
sample then acquired the current temperature data from the
thermistor channel and stored it in memory. The GPS data
was then read from the COM port by calling the functions
Open Connection, Process COM Notification, and LatLong
(these can be seen in Figures 98-11). This allowed the GPS
data to be read, and the appropriate data to be truncated so

that the latitude and longitude were acquired.

The next step in the Get Data function was to allocate the
appropriate number of buffers for the DMA mode operation.
This was defined by taking the total number of samples and
dividing it by the maximum buffer size. The buffers were
then initialized with the maximum number of samples in each
buffer. The remaining samples left over were allocated to
the last buffer. The amount of memory allocated was
dynamic, in that it only acguired the amount needed for the
given number of samples. The program used the minimum
amount of memory needed each time it acquired data. The
buffer list on the A/D device was updated, and the frame was
informed of the multiple buffers and number of samples. Now
that the memory was allocated, the Get Data function

signaled the A/D converter to begin sampling the hydrophone

35



Figure #9:0penConnection:

Call OpenComm
Windows function

(get COM port Handle)

\

Call Setup Connection [

Call windows

EnableCommNotification
function

36



Figure #10: ProcessCommNotification:

Call Windows API

ReadComm function

{

Data
Obtained from
COM Port ?

GetCommError

@ Yes

Call LatLong
Function

37



Figure #11: LatLong Search Data from  [B
COM port for lat/long |

in string

Y

Check for furthur lat/long
characters through strin.

Parse string into two stringsf:
latitude & longitude

Do latitude &
Qongitude strings contain
valid data ?

{} Yes

Copy parsed strings to
Globals for display and
storage

38

Return to
ProcessCommNotification




data using DMA mode. This meant that the sampled data was
stored directly into the memory of the computer without
interrupting the CPU. This allowed for fast, and wvirtually
continuous sampling of hydrophone data until the frame of
multiple buffers was full (depending on either continuous or
single cycle mode}. The number of buffers was defined by
the sampling time and sampling rate. This allowed the user
to acquire the desired amount of data with exception to the

limitation of buffer size and maximum number of buffers.

At the end of the Get Data.function, the Process Timer 1
Procedure was initiated. The timer worked the same as the
previous timer by adding a message to the message queue when
the cycle time elapsed. However, the subroutine that was
called was directed to the Process Timer #1 Procedure (see
Figure 12). This procedure monitored the status of the A/D
device while it sampled the hydrophone data. The time set
for the timer was set to update every ten milliseconds.

Then every ten milliseconds the Process Timer #1 Procedure
retrieved the DMA status of the A/D device, checked the
status, and read the index (the index is the actual number
of samples taken by the device). The status was checked for
an overrun error as well as if the device was active or
inactive. When an overrun error was encountered, the timers

were reset, the Stop Acquiring function was called, and an

39



Figure #12: Process Timer #1 Procedure

Get the DMA status
of the A/D device

“Status” & “Index”

<

Display updated transfer §
counter display, “Index”
to the user window

r

Kill Timers
Call Process Error
Call Stop Acquiring

Kill timer procedure #1

Update diplay box to inactive
Stop the DMA mode operation

Set DataFlg = 1
Call Convert Data Function

<

see Process Timer #1 Procedure (cont’d)

40



Process Timer #1 Procedure (cont’d):

Call Store Data Function

Call Show Data Function

U

Free DMA memory
Reset A/D buffer list
Reset Status Flags

error message was displayed. Otherwise, the timer continued
to check if the device was still active. If the device was
active, the index was updated to the count display on the
user interface and the function returned. Note that the
counter incremented only to the maximum number of samples in
the buffer. When one buffer was full, the device began to
fill another buffer; the count started at zero and counted
to the maximum buffer size. Once the device was inactive,
the Procesé Timer 1 Procedure was reset and the DMA mode

operation was stopped.

41



Now that the data was acquired, the next step was to convert
and manipulate the data. At this point a Data Flag was set
to exclude any other function from altering the data (i.e.
the Process Timer 2 Procedure from trying to get another set
of data). This included converting the pressure transducer
data to a depth, the thermistor data to a temperature, and
calculating the sound pressure level from the hydrophone
data. This was completed in the Data Translation function

seen in Figure 13.

The next step was to store the acquired data on disk._ By
doing this, the program created several files. The
hydrophone data were stored to a separate file for future
analysis. After the depth, temperature, and sound pressure
level were converted, the values were placed in a string and
stored in another file. For each set of acquired data, é
hydrophone data file was created and a second file was
updated with the temperature, depth, time, latitude,
longitude, sound pressure level and the filename of the
hydrophone data. After the data were stored the user
interface was updated. The allocated memory was freed and
the A/D buffer list and status flags were reset. The
program then waited for the Get Data function to be called
by the Process Timer 2 Procedure, or for the user to

terminate the program by pressing the stop button.

42



Figure #13: DataTranslation:

Get Depth and Temp.

A/D values

v

Convert Depth & Temp [

values to Voltage

v

Convert Depth and Temp
voltage levels to
Appropnate Units

{

Return Values to

Calling function

43



The Stop Acquiring Function, seen in Figure 8, was called
when either the user clicked on the stop button, or the
total sample time defined by the user elapsed. This
function enabled the start button, disabled the stop button,
and updated the status box to inactive. It then checked the
A/D device to see if it was still active. When the device
was not active the function returned from the subroutine.
When the device was active, both Process Timer 1 and Process
Timer 2 procedures were cleared and the DMA mode A/D
operation was stopped. It then reset the status flags and
returned. This allowed the user to stop the data
acquisition, and reconfigure the acquisition parameters to
their original state. The user could then restart or close
and exit the program. If the user decided to exit the
program, the Release Driver Function was called and the
program terminated. The Release Driver Function can be seen
in Figure 14. 1If the user started the program again, the
program continued to acquire data until the user finished

taking data.



Figure #14: Release Driver

Release Frame handle

O

Release Device handle [

Close the device driver

Signal Conditioning

The device signals required some initial amplification to
drive the long cable length. Each signal was amplified
through a separate amplifier, and then transmitted along the
corresponding twisted shielded pair within the cable. The
signal was then received at the opposite end and connected
to the A/D converter input,‘where it was then sampled. The
amplifier specifications varied for different signals. For
the thermistor and pressure transducer, the signals were
virtually DC level signals. Thus the amplifier did not
require much in the way of bandwidth. However, the
hydrophone signal was conditioned using a pre-amplifier

which was purchased with the hydrophone from Spartan

45



Electronics. This amplifier was specifically designed for
AMP due to the sensitivity of the hydrophone and the
characteristics of the cable. This was to ensure that the
full range of the hydrophone was utilized. The amplifier
schematic can be seen in Appendix D along with the

hydrophone specifications.

Hardware
Several hardware components were necessary to implement the

data acquisition aspect of the project. These included

"LM741 operational amplifiers used as a base in amplifying

the signals created by each device. The amplifiers were
designed such that the output impedance of the amplifier
matched the impedance of the communication cable. This was
done to minimize the reflection coefficients in the signal,
as well as to reduce the attenuation and corruption of the
data signal. At the receiving end of the cable, it was
necessary fo ensure that the input impedance to the A/D

converter matched that of the communication cable.

Another hardware device which played an important role in
the data acquisition was the A/D converter. By the Nyquist
Theorem, it was necessary for the A/D converter to be able
to sample at least twice the maximum frequency of the

sampled data signal. In this case, it was twice the maximum

46



frequency of the hydrophone signal which was approximately
170 kHz. This required the A/D converter to sample at 340
kHz. Initially, it was planned to use the Motorola MC68HC11
Evaluation Board (EVBU) to sample the data. The EVBU was
equipped with an on board A/D converter which was capable of
sampling up to four different inputs. It could be
programmed using microcode for specific applications and was
also fairly inexpensive. However, it was found that the A/D
converter on the 68HC11 was not fast enough to sample at the
desired sampling rate. Thus, the move from the 68HCll to
the Keithley Metrabyte-18002HC was a necessary design change
for the creation of a faster more efficient means of data

acquisition.

The Keithley Data Acquisition System was a high performance
A/D board for the IBM PC and compatible computers. The DAS-
1802HC featured 64 single ended inputs or 32 differential
inputs, as well as continuous, high speed, gap-free data
acquisition under Windows programming environments. The
onboard FIFO(first-in-first-out) buffer and dual channel
Direct Memory Addressing (DMA) mode allowed for continuous
acquisition of data at a maximum sampling rate of 333k

Samples/second (see Keithley manual for more details).

47



This benefited the AMP system in many ways. The utilization
of DMA allowed the system to sample a much larger and
continuous time frame segment before storing or displaying
the data. It also allowed the data to be stored in CPU
memory without interrupting the CPU, and therefore
acquisition throughput was virtually unaffected by program
flow. Note howéver, the program flow did effect the amount
of continuous acquisition time between samples. The
continuous acquisition time between samples was the speed at
which the program stored the data and updated the display.
This effected the minimum sample interval and therefore, the
continuity of the acquired data. Once the allocated buffers
were full, the A/D could not sample data again until the
previously sampled data were manipulated by the program.

This effected the Real-time design aspects of the software.

The use of the Keithley Data Acquisition System also
provided an easier way to integrate the Differential Global
Positioning System (AGPS) into the AMP system, due to thé
newly vacant serial port previously needed by the MC68HC11
EVBU. The GPS was connected directly to the PC COM port,
and read by the AMP software to acquire the necessary
latitude and longitude data. Therefore, the hardware of the
AMP data acquisition system was fully integrated within the

PC, which made it compact and easy to use.

48



V. INSTRUMENT HOUSING

The instrumentation was mounted to a pressure housing for
deployment. The housing contained all of the necessary
parameters to meet the requirements of the sensors and

ultimately the probe’s design.

Pressure Vessel

The pressure housing was borrowed from a former
instrumentation project. It was decided that only new
endcaps to accommodate the sensors and a new internal pc
board & battery pack were all that were needed to allow for
the pfessure vessel to be interchangeable. End caps were
machined for this final housing in the UNH machine shop.

All of the measurement devices were mounted to the pressure
vessel via the proper through hull penetrations. The
pressure vessel was designed to mount the three sensors and
the cable connection as well as contain in a water tight
compartment the controlling devices for each sensor, a power
supply, and several signal amplifiers. The pressure vessel
was designed to the required depth of 500 ft corresponding
to a pressure of approximately 250 psi. The pressuré vessel
was fitted with clamps to access the power supply and

perform modifications to the measurement devices as needed.

49



The material used for the housing was Aluminum as it was the
least costly material to use. Aluminum was also the least
corrosive material considering the marine environment for
which AMP was designed. For the complete pressure vessel

analysis see Appendix C. For a design layout see Figure 15.

Figure 15 AMP housing and cage.

50



Sensor Locatien

The issue of mounting the hydrophone was one of serious
concern. Due to the acoustic properties of the omni-
directional hydrophone element, it was necessary to mount
the hydrophone as far as possible from the housing so as to
minimize reflections. This was done by mounting and potting
the hydrophone to an eight inch rod which protruded from the
pressure vessel. The pressure transducer and thermistor
were fixed with tapered pipe threads and mounted to the

housing using Teflon tape.

The pressure housing was encased in a cage to protect it
from damage that could occur both in transit and insitu,
i.e. fish bite. The cage consists of four 5/16” rods formed
into an apex at one end (see Figure 15). The cage was also
fitted with four nuts for assembly/disassembly in order to
provide access to the pressure vessel and ultimately the

instrumentation.

Cable

The measured signals were transferred to the surface via an
electro-mechanical cable. The electrical cable consisted of
three twisted shielded pairs of 22 gage conductors. The 500
foot cable was terminated with water proof six pin cable

connectors supplied by D.G. O'Brien. The impedance and

51



capacitance of the cable were 500 / 1000 feet and 30pt/
foot respectively. The mechanical aspects of the cable
included a low-stretch double braided, torque balanced
polyethylene rope. The electrical cable was tethered to the
rope via a plastic adhesive. Markings were placed every
five feet for a manual depth reference. Five inches of
cable between each attachment point was provided for initial

cable stretch.

V1. BUDGET CONSIDERATIONS

The AMP project throughout its duration had accessible to it
an operating budget of $2,500. This budget acquired
graciously through Sea-Grant project, provided the design
team Qith a means to design and build the AMP system. Due
to the complexity of the project and costs of many of the
important features in the project, the cost of AMP was
actually considerably greater than what the budget allocated
{refer to Table 2). The group was fortunate to be assisted
by a few key businesses and organizations to help defer the

cost of the project.

52



2pprovima

H?&ééphoné '
Pressure Transducer 5600 5600
Torque Balanced Rope $250 $250
Misc. Hardware $100 $100
Misc. Group resources 100 $100
Probe Cage 530 $30
Ocean Spec. Cable Conn. 51500 50
Cable $500 50
A/D Converter $2900 SO+
Differential GPS 5600 S0%
Pressure Vessel 5200 S0
Thermistor $50 $0
Computer N/A S0
Total $803¢ $2280

Table 2 ~ AMP Cost Analysis

[* = resources available through the Ocean Engineering Department)

The group was able to acquire much of the needed equipment_
for free or for a very inexpensive cost from a few different
resources. The group acquired 1000' of Olflex Cable from
Heilind Electronics for no cost. This saved AMP upwards of
$500. The group was also able to acquire free underwater
connections for this cable as well as the testing of the
cable from D.G. O'Brien, an under-sea connection specialist,
This saved amp approximately $1500. The team also obtained
the appropriate Analog to Digital converter from the Ocean
Engineering Department for the project. The board alone

cost approximately $2900 which would have consumed the

33



entire operating budget, (note the other * components which

the group acquired from the Ocean Engineering Dept.)

Much of the hardware was rejuvenated from previous projects.
The pressure vessel was used on an earlier project and
converted quite easily to suit AMP’s needs. This was a
savings of $200. The temperature probe and the
Differential GPS system were also obtained from the Ocean

Engineering Department at no cost.

As one can see much of the $2,500 was placed in only a few
needed resources. The hydrophone system alone was purchased
for $1,200 which was 48% of the budget. The purchase of the
pressure transducer was also costly at $600, 24% of the
budget . This consumed a considerable portion of the budget
Wwith the remainder going to various hardware and

accessories.

VII. TESTING AND EVALUATION

Cable: The electrical cable was tested at D.G. Obrien. For

the results see Appendix F.

Pressure Sensor: The pressure transducer was tested at

Keller PSI. For test results see Appendix E.

54



Thermistor: The thermistor was tested by varying the

temperature that the thermistor was exposed to and

monitoring the change in electrical output.

Pressure Vessel: The pressure vessel was tested on two

separate occasions. The first test to a depth of 200 feet
and 15 minutes of exposure resulted in a great dealkof
leaking. It was believed that the vessel leaked due to a
machining problem which was resolved for further testing.
The second test to the same depth and similar duration

proved successful with no water leaks.

- SOFTWARE : Software testing of the acoustic mapping

probe was an on going process throughout the project. The

programming evolved using a step by step building process in

which each function developed was tested before proceeding.
This was to ensure that the overall functionality was

correct, and the software functioned as designed.

1. The software interaction with the Keithley A/D device was
tested and worked with the given Keithley library
functions. The device was configured by the user and
functioned according to these configurations. This

included taking a single sample of thermistor, and

55



pressure transducer channels as well as continuously
storing the hydrophone data into CPU memory via DMA mode.
The software interface with the differential GPS was
tested and functions as designed. The latitude and
longitude were obtained and then updated to the screen
successfully.

The software user interface was also tested. The user
was able to input the desired sampling time requirements,
and the program operated successfully utilizing these
parameters.

The data validation of the program was also tested. A
voltage was input into the A/D port and the program
displayed the correct voltage in the display. Thus, the
data being received was valid. The acquired data was
converted, updated to the screen, and stored to the

appropriate files successfully.

56



VIII. Summagx

The AMP system was developed to aid in the necessity to map
the sound field in the harbor porpoise environment. BAMP was
developed in a portable, user friendly, cost effective
fashion. The system, when operated, provided the user with
the necessary information to accomplish the sound field
mapping task. The user friendly software of the AMP system
provided the user with a file containing lat/long, depth,
temperature, and sound pressure level measurements at a
particular time for a given location. This was the
necessary information for the proper mapping of the under

water sound field.

The AMP system included the probe, electro-mechanical cable,
a PC and PC power supply. These system components when
assembled allowed for operation including deployment, data

logging, and recovery by one user.

The software was written in a style that provides future
programmers with the options for relatively simple coding
advancements. The pressure vessel used was also designed

with room for future expansion.

57



IX. References

Kraus, Scott, A. Reed, Kenneth C. Baldwin, E. Anderson,A.

Solom, T. Spradlin, J. Williamson. “A Field Test of the Use

of Acoustic Alarms to Reduce Incidental Mortality of Harbor

Porpoise in Gill Nets.” April, 1995.

Urick, Robert, “Principles of Underwater Sound.” 3rd

edition, 1983, McGraw-Hill.

Keithly Data Acquisition, “DAS-1800 Series Function Call

Driver User’s Guide.” 1994,

58



Version 1.0

&ELCOME TO AMP ] AMP SOFTWARE CAPABILITIES

AMP is a data acquisition
program for under sea acoustic data
acquisition. The AMP team has
attempted to create a software package
that allows for a large amount of lydrophore Daty
fiexibility in data acquisition as well as an easy to use interface to aid in the necessary tasks
associated with data acquisition.

AMP can be considered an information "manager.” AMP, applying user settings,
performs tasks required to acquire information necessary for data analysis ( See figure A).

Configuring the Software

Due to AMP's functionality and its dependency on proper running external equipment, it
is important to correctly connect and setup the Global Positioning System, A/D, and probe
systems. . For further detailed information be sure to review the Keithly A/D and Magnavox
GPS manuals. For further probe system setup, refer to AMP project report.

Configuring the software for your data acquisition session involves only a few simple
steps. The first step before loading the program is to decide upon the amount of data to sample
and the Sample Rate to sample upon, (note: currently the sample rate will have to be the
maximum of 333333 kHz, this is due to the lack of a low pass filter currently in the design,
sampling below this rate without a low pass filter will result in aliasing. Refer to any signal
processing book for further information.) Once these values are chosen, select the AMP icon to
run the program. The main window should appear see fig "AMP Main Window."

[ User input ] [File Storage & Updatej [ Data Display j

N
vl N

“Infomation Manager™
Global Positioning System Analog to Digital Converter
Data )
Hydrophone | [Temperature Depth
Data Data Data

'i"igure A- AMP as seen as an)

\Elfomation manager

60



ime Settings i i
Sampie Tine fseck 1]
Hold Time (sec): [:] '

Bpn--D_ﬁratiqn[ta_llul 5]

__Spi . SampleSet# |

The top left of the main screen contains the A/D channel configuration. The channels
default to 0,1,2 for hydrophone, depth and temperature respectively. If there is a need to
relocate the connections to these sensors on the jumper board do so before running AMP and
then change values in AMP accordingly. The channels can be seen on the jumper board.

Below "A/D Channels” is the sampling rate. As mentioned, this rate will default to
333,333 kHz, and should remain there unless a low pass filter is used on the hydrophone
connector.

The "Data File" box is where the prefix you will be using to store the data is entered.
The prefix is the name of the file you will be storing to without the three character extension
associated with most DOS files. When AMP is started, the file name you give here will be used
to store one file which contains the Time, Latitude, Longitude, Depth, Temperature and Sound
Pressure Level. This file will be created and named with your prefix and the extension ".txt" (in
our case the file stored would be "file.txt") The other files created is a group of files containing
hydrophone data.

The hydrophone data is sampled and each grouping of data is stored into an individual
file. i.e. the first sample group of hydrophone data acquired will be stored in “file_hyd.1" The
next in “file_hyd.2", "file_hyd.3" etc. This will allow more flexibility and better analysis of the
data. It also gives us a good way to break up files since they can become quite large ( files may
reach upwards of 2.5 Megabytes ).

61




Once a File name is selected, the time settings also must be tailored. These settings are
crucial for proper acquisition. The first value to set is the Sample Time. This value in seconds is
the amount of time the A/D board wilt take samples from the hydrophone, currently this can be
anywhere from 1 to 7 seconds ( 7 seconds is approximately 2.3 Million samples @ 333,333 Hz
sample rate !)

The next value "Hold Time" is the value in seconds between samples. Note this value
is actually not permanent. Due to variations in CPU speed and drive access speed, if a vaiue
you enter is too low the software automatically replaces your value with the minimum possible
time between samples. The extra time may be needed for GPS data acquisition of storing
samples to disk, or 2 multitude of other operations occurring {Note this doesn't affect sample rate

)

The Run duration is the amount of time that you wish the program to acquire data. This
is the overall time of the sampling session. Once all of the above options are set, it is then time
to setup the GPS for use.

The GPS has only two options both located in the GPS Connectivity menu. The first
configuration is the "COM" port selection of the GPS. The options "COM1" and "COM2" appear,
the default is "COM2." Once you select the "COM" port simply re-enter the menu and Select
"Connect GPS". The GPS is now connected and ready for satellite reading ( refer to Magnavox
GPS manual for further information ) . You do not have to use the GPS in your acquisition
program if you do not need this added information. If you do not wish to run the GPS in your
data session, do not follow above steps.

You are now ready to start the program. Click on AMP Start and the program will
automatically start acquiring all the data you have requested. You can check and verify data in
the "Acq. Status" area. The status of the A/D board will be displayed in the Status window as
either Active or Inactive, the "A/D Sample#" window is updated with the number of samples
received so far, and the "#Samples” box displays how many samples are being acquired by the
A/D board from the hydrophone. Below this window is where data from the sensors are
displayed and two the right in the Hydrophone window is where the first 1000 of each
hydrophone sample group is displayed for signal integrity.

To stop AMP you can wait for the Run Duration to time out or you can stop the program
manually by clicking on the stop button.

To exit Simply.Click on the "Close" button. This will exit you from AMP.

If you have any further questions configuring AMP please refer to the AMP project
report for further detailed explanation of use.

62



I_tgpendix B

MMP Program: C Code

63



Fhdachd 3k % *****tt*********#***#***##****t#it**********/

* AMP CODE *f
* Universtiy Of New Hampshire */
1* Tech 797 Ocean Projects */
/* AMP - Acoustic Mapping Probe */
/* Project Advisor: Dr. Kenneth Baldwin *
/* Team Members: Chris Pacheco, ME *f
1* Jason Gerty, EE */
/* James Inglee, EE */
" */
/**** _ ok deakakak kK * ttt#t#******t*****#*****ttt****/
#include <io.h>

#include <fentl. h>

#include <sys\types.h>

#include <sys\stat.h>

#include "gps.h"

#include <time.h>

#include "dasdecl.h”

#include <stdio.h>

#include <string h>

#include <ctype.h>

#include "Ampl.h"
#include "Amp2.h"
#include "resource.h”
#define UsedStringSize 70

/! Global Variabies Below used in GPS Acqusition, Manipulation and Display

int COMMID; // Value for com device opened for GPs
int GPS_FLAG=0; /! flag to determine if GPS will be used

int COMMPORT_FLAG=0; // flag to determine if COM port has been selected
char which_comm[4]; // string for com port selcted

int NOTIFY_FLAG=1, f/ flag to determine data correctly parsed

char WEST(10]; /! GPS long coord

char NORTH[9]; /f GPS latitude coord

char far *north; // pointers to GPS data strings

char far *west,

// Global Variables Below used in A/D board initialization & acquisition

DWORD hDrv1800; // Driver Handle

DDH hDev1800; /f Device Handle

FRAMEH hAD; // Frame Handle

void *nDMABuf[125]; // Pointer for Buffers used in DMA
WORD hMem[125]; // Handle of the DMA pointer

char NumberCfBoards; {/ Number of boards to configure
long NumSamp; {// number of samples to take

int NumBuf=0; // number of buffers used
long int holder; // used in allocation of buffers



long BufCount; /f count of buffers used
/I Various Globals involving timers, files, display strings, and notify flags

char far szTimeString{10]={0}; // time holder

short ADOP=0; H Mode Flag

short Done =0; /! Done Flag

int DataFlg = 0; /1 flag to keep program out of critica data
short Status; /! Status variable

short Em; /! Return value from the functions
char Temp[80] = {0}; / temporary gloabal array
char szErm[20]; /! Etror display buffer
unsigned long Index; // Index variable for A/D

int nislcon=0 ; /f windows iconize flag

long InitTime; /! initialize time

float tempvolt;

float presvolt;

char vtemp[5];

char vpres{5];

// unknown variables

short DevOpen;

short nFocus;

// Beginning of Code

int PASCAL WinMain(HANDLE hinstance, HANDLE hPrevInstance, LESTR IpszCmdLine, int
nCmdShow) ‘

{

/*v ek ok % Wk kR e e o ol ok ok s ok e ok o * *ttt#t**t*##/
/* HANDLE hinstance; handle for this instance */
/* HANDLE hPrevinstance; handle for possible previous instances */
/*LPSTR lpszCmdLine; long pointer to exec command line */
/*int nCmdShow; Show code for main window display */
/tt*t""" * * %Ak "-***#*#***tttt**#*****l‘*###tt*ttt*##***t#/
MSG msg; /* MSG structure to store your messages */

int nRc; /* return value from Register Classes */

strepy(szAppName, "CWEX1");
hinst = hInstance;

if(!hPrevinstance)
{

/* register window classes if first instance of application */
if ((nRc = nCwRegisterClasses()) =— -1)
{
/* registering one of the windows failed */
LoadString(hinst, IDS_ERR REGISTER_CLASS, szString, sizeof(szString));
MessageBox(NULL, szString, NULL, MB_ICONEXCLAMATION);
return nRc;

65



}
}

/* create application’s Main window, actually a dialog box! *f
hWndMain = CreateDialog( hinstance, szAppName, 0, NULL) ;

//get handle to window

/* display dialog box*/
ShowWindow(hWndMain, nCmdShow);

/* setup default fields for acquisition parms, etc. */
InitWindowFieldsthWndMain) ;

/* initialize the DAS device */
InitDASDevice() ;

while(GetMessage(&msg, NULL, 0, 0))  /* Until WM_QUIT message */
{

TranslateMessage(&msg);

DispatchMessage(&msg);

}
/* Do clean up before exiting from the application *f
CwlUnRegisterClasses();
return msg.wParam;
} /* End of WinMain */
/ ok 36 e e s ke s ol e e o oot o ok o o o ol ol oot ol ok ke S ok s ok o o ok A ak ak ok L2 I
r* */
/* Main Window Procedure */
I* */
/* This procedure provides service routines for the Windows events */
/* (messages) that Windows sends to the window, as well as the user */
/* initiated events (messages) that are generated when the user */
f*selects the action bar and pulldown menu controls or the corresponding *f
/* keyboard accelerators. */
r* */
I‘* ! * %k Sk kkFErrkik kiR kkkk kR Rk k¥ kkE /

LONG FAR PASCAL WndProc(HWND hWnd, UINT Message, UINT wParam, LONG 1Param)

{im nRc=0; /* return code */
switch (Message)
case WM_COMMAND:
{ // this is a notification that a menuitem has been selected
// or a button has been pressed

switch {(wParam)

66



{

case StariBtn:
// start button pressed
StartAcquiring( hWnd) ;
break;
case StopBtn: /! stop button pressed
StopAcquiring( hWnad) ;
break;
case CloseBin: /f close button pressed
case IDCANCEL:
StopAcquiring{ hWnd) ;
ReleaseDriver();
PostQuitMessage(0); // quit application
break:
case COMM _1:

COMMPORT _FLAG=1;

strcpy(which_comm, "COM1" );
break;

case COMM_2:
COMMPORT FLAG=1;

strepy(which_comm, "COM2" );
break;

¢ase gps_connect:
CreateGPSInfo(hWnd);
GPS_FLAG=1;
if({COMMPORT_FLAG)){
MessageBox( GetFocus(), "Comm Port Not Selected, Please Select from Menu",
"GPS SETUP"MB_OK ) ;

break;

}
OpenConnection( hWnd);
break;

case gps_disconnect:
GPS_FLAG=0;
CloseGps( hWnd),
break;

case gpsgo:
ProcessCOMMNotification( hWnd, (WORD) wParam, (LONG) IParam ) ;
break;

}

return (0};
}

67



case WM_TIMER:
{
switch(wParam)

{
case ID_TIMERI:

ProcessTimer1(hWnd);
break;

case ID_TIMER2:

ProcessTimer2(hWnd);
break;
¥

H
case WM_SIZE:
if (wParam == SIZE_MINIMIZED)
{ // app is being iconized
nislcon=1;
if (ADOP && !Done)
SetWindowTextthWnd, "DAS-1800 [Active]™) ;
else _
SetWindowText(hWnd, "DAS-1800 [Inactive]™) ;
}
else // app is being restored
{
nlslcon=0;
SetWindowText(thWnd, "AMP: Data Acquisition Program") ;
}
break;

case WM_CL.OSE: /* close the window *f
StopAcquiring{ hWnd) ;
ReleaseDriver();
DestroyWindow(hWnd};
if (hWnd == hWndMain)
PostQuitMessage(0); /* Quit the application */
break;

default:
/* For any message for which you don't specifically provide a */
/* service routine, you should return the message to Windows */
1* for default message processing. */
return DefWindowProc(hWnd, Message, wParam, 1Param);
}
return OL;
}  /*End of WndProc */

68



JrRrkkkk ok kkkk ¥ o ke e e e e ol o ok ok ok ke ok ok

/f CloseGps Function
// note currently no error checking

) ”# e sl 2 o e oK o 3¢ ke 3 e o o ok e o ok o ol ol ke o o o O
void CloseGps( HWND hWnd)

{
i CloseComm(idComDev);

’
j*#*# 2 o o e g o 2 ok o ok ok ook A s 2ok ek ok k ok ok ii#/
% */
/* nCwRegisterClasses Function */
Fid */
/* The following function registers all the classes of all the windows associated */
/* with this application. The function returns an error code if unsuccessful, */
/* otherwise it returns 0. */
I */
/***#*#****#*****#*ttt#*"‘ L 21 Fkkkx Kkekkkk ****t#****{
int nCwRegisterClasses(void)
{
WNDCLASS wndclass; /* struct to define a window class */

memset(&wndclass, 0x00, sizeof( WNDCLASS));

/* load WNDCLASS with window's characteristics */
wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_BYTEALIGNWINDOW;
wndclass.lpfnWndProc = WndProc;

/* Extra storage for Class and Window objects */
wndclass.cbClsExtra = 0,

wndclass.coWndExtra = DLGWINDOWEXTRA;

wndclass.hinstance = hInst;

wndclass.hicon = Loadlcon(hlnst, "ampicon™);

wndclass hCursor = LoadCursor(NULL, IDC_ARROW);

/* Create brush for erasing background */
wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wndclass.lpszMenuName = NULL,;

wndclass.lpszClassName = szAppName; /* Class Name is App Name */

if('RegisterClass(&wndclass))
return -1;

return({0);

} /* End of nCwRegisterClasses */
JAcd o ook ok o ook ok o ok PR LT ek e ok o ook K ok ok ok ok /
/* CwUnRegisterClasses Function */
/* */
/* Deletes any references to windows resources created for this */
/* application, frees memory, deletes instance, handles and does *
/* clean up prior to exiting the window */
/* */
JEEE Rk okl ko ok koo oK ok A ke e ok ok sk sk ok ok ok ok ke ok *ERE KK ‘******/

69



void CwlUnRegisterClasses{void}

{

WNDCLASS wndclass; /* struct to define a window class *f
memset(&wndclass, 0x00, sizeof(WNDCLASS));

UnregisterClass(szAppName, hinst);

} /* End of CwUnRegisterClasses */
/‘*t******************#***#*#**###***##********l** e e 3 3 2 Ak e 2 o ****/
/* InitWindowFields Function */
/* x/
/* This function initializes the state of certain buttons, and */
/* the sets the defanlt text for all input boxes. */
1% */
/*********t***t#*#####*******‘***#*** ¥kkFkkkkkkkkkkkkE “*v******/
void InitWindowFiclds( HWND hWnd )

{

/* initialize some input boxes */

SetDlgltemText( hkWnd, TempChanBox, "2" } ;
SetDigltemText( hWnd, PressChanBox, "1") ;
SetDigltemText( hWnd, Hydrophone, "0" ) ;
SetDlgltemText( hWnd, NumSamplesBox, *17 ) ;
SetDIgitemText( hWnd, SampleRateBox, "333333" ) :
SetDigltemText( hWnd, FileNameBox, NULL);
SetDlgltemText( hWnd, WriteStatusBox, "0");
SetDigltemText( hWnd, SampIntBox, "2");
SetDlgltemText( h'Wnd, SampTimeBox, *5");

/* these are static input boxes, not for user input */
SetDlgltemText( hWnd, INTStatusBox, "Inactive” ) ;
SetDigltemText( hWnd, INTTransferBox, “0" ) ;

/* disable some buttons and input boxes */
EnableWindow (GetDIgltem(hWnd, StopBtn), FALSE),

3

JEEREREEREEXEFERERRRRE SRR R ERFEEREEEEE ek *********t#t***ttt*t**/
/* InitDASDevice Function *f
I */
/* This function initializes the board and driver according to the */
/* settings of the configuration file. */
" *
/****#*t*****#*t***#**************************t*t*#t****#t#*#t*#*t**t#***/
void InitDASDevice(void)

{

// open our DAS-1800 device
if{(Err=K_OpenDriver("DAS1800","das1800.cfg",&hDrv1800)) !=0)
{
if (Err==0x6035) // driver already opened
{
Ermr=MessageBox( GetFocus(), "DAS-1800 driver has already been opened. Continue using
previous configuration?",

70



*DAS-1800"MB_YESNO );
if (Err=6) //ves
Err=K_OpenDriver("DAS1800","",&hDrv1300);
else
exit(1);

else
{
ProcessError{Err);
exit(1);
}
}

// now get a device handle
if((Err=K_GetDevHandle(hDrv1800,0,&hDev1800)) 1= 0)
{

ProcessError(Err);

exit(1);
}

/! now get an AD Frame
if((Err = K_GetADFrame(hDev1800, &hAD )) 1=0)

{
ProcessError(Err);
exit(1);
}
} // end of InitDASDevice
/* 3k ok ok o ek kR *kk kR FRERERA R E *% *xf
/* ReleaseDriver Function */
/* x/
#* This function releases driver resources such as frame and *f
/* driver handles. *f
I *
Fe t s T e L kdkkk sk ke kR *hkkRkE */
void ReleaseDniver(void)
{
/f release frame
K_FreeFrame(hAD);

// release device
K_FreeDevHandle(hDev1800);

/{ close driver
K_CloseDriver(hDrv1800) ;

71



SRR sk ok o Aok ok R Rk R ke ok sk Ok kR kR ok ko R k¥ * *%f

/* StartAcquiring Function */
1* */
/* This function signals the board to start the A/D acquisition based */
/* on the user specified input parameters, *f
/* */
f***********#**#**#**‘******#**************t****#***************tt***#t#*/
void StartAcquiring(HWND hWnd)

{

static long Rate; // Rate Clock Divisor
static long Samples, Interval, SR, ST; /f Sample Interval

static int nGain, nChan;

char TempBuf[80] = {0};

char SamplInt[80] = {0};

/I get the number of samples and allocate a buffer
InitTime = GetTickCount();

GetDlgltemText(hWnd, NumSampiesBox, (LPSTR)TempBuf, 10); // 10 digit max
ST=atol(TempBuf);

GetDlgltemText(hWnd, SampleRateBox, (LPSTR)TempBuf,10);
SR = atol(TempBuf);
Samples = SR*ST;

NumSamp = Samples ;
NumBuf = Samples/Max_Samp;

{/ save the sample number for later

if(Samples%Max_Samp = 0) /1 if there is a remainder then allocate

another buffer )

NumBuf=NumBuf+1;

BufCount = Samples; {/set buficount equal to sample number to
keep track of

//how many samples are
needed in the last buffer
//set the

hydrophone channel

GetDlgltemText(hWnd, Hydrophone , (LPSTR)TempBuf, 7);
nChan = atol(TempBuf),

if((Err=K_SetChn(hAD,nChan))!=0)

{
ProcessErmror(Err);
return;
}
nGain=3;

{/set sample range to +- 1.25 volts
if{(Err=K_SetG(hAD,nGain))!=0)
{

72



ProcessError(Err);
return;
}

// set the internal clock sample rate
GeDlgltemText(hWnd, SampleRateBox , (LPSTR)TempBuf, 7); // 7 digits max

Rate = atol(TempBuf); // convert to a clock divisor
Rate = (long)(1/(Rate * .0000002)); // 5MHz clock!

if((Err = K_SetClkRate(hAD, Rate)) I=0)
{

ProcessError(Ermr);

return;
}

// Set continnous mode if user checks the box;
// Otherwise sct to single-<cycle mode
if (IsDlgButtonChecked({ hWnd, ContBox) )
{
f{({Err = K_SetContRun(hAD)) 1= 0)
{ .
ProcessError(Err);
return;
}

else
{
if{i(Err = K_ClrContRun(hAD)) 1= 0)
{
ProcessError(Er);
return;
H
}

// enable stop button & disable start
EnableWindow (GetDigltem(hWnd, StopBtn), TRUE);
EnableWindow (GetDIgltem(hWnd, StartBtn), FALSE);

Get_Data(hWnd,hDev1800);

// Start a timer which handles the timer interval set by user
GetDlgltemText(hWnd,SampIntBox,(LPSTR)Samplnt,2);
Interval = atol{(Samplnt);
Interval = Interval*1000; //change seconds to milliseconds
if(1SetTimer(hWndMain, ID_TIMER2, Interval, NULL))
{
wsprintf(szEmr,"Timer2 Error!");
MessageBox(NULL, szEm," Error ", MB_OK | MB_ICONEXCLAMATION);
exit (1);
H

} /1 end of StartAcguiring

73



1* Wk kK sk ook Rk kR Rk R bt L2t L]

T*****/
f* ShowData Function */
= */
/* This function displays the acquired data in the ListBox. The data */
/* displayed is limited to the first 100 samples, or less. */
/* */
f** * skkkkk 7*Y#****************#**********t*t*#***************##***/
void ShowData(HWND hWnd)
{
char szDataString[10];
char szlndexString[10];
char szString[128];
short SampData ;
int i
short far *pBuffer;
long ShowSamp;
DWORD ¥
float vval;

ShowSamp=NumSamp;

if (ShowSamp >1000) ShowSamp = 1000 ; // limit to first 1000 samples

// added
to test continuity

pBuffer=( short far *)pDMABuf[1};

/f limit to first 1000 samples
// Clear the data box first

SendMessage (GetDlgltem(hWnd, DataListBox),LB_RESETCONTENT, 0, (LONG) (LPSTR)
szString);

for (i=0 ; i<50 ; i++)
{
SampData = pBufferfi];
vval = (SampData * 2.5)/4096;
/Mtoa( vval , szDataString , 10)};  // base 10
_gevt( vval, 3, szDataString ),
itoa( i, szIndexString , 10 ), // base 10
i+
strepy( szString, * BE

strocpy( szString+5, szIndexString, strlen(szIndexString)) ; // add index

strnepy( szString+15, szDataString, strlen(szDataString)) ; // add data

SendMessage (GetDlgltem(hWnd, DataListBox),LB_ADDSTRING, i, (LONG) (LPSTR)

szString);
h

}

74



j***#************************************t**t***#*****#***********#*#****/

/* StopAcquiring Function */
/ * */
/* This function signals the board to stop the A/D process. */
1* *f
/*********t*t*#**#*****#*************************************#*#**t***##t/
void StopAcquiringGTWND hWnd)

{

// enable start button & disable stop

EnableWindow (GetDlgltem(hWnd, StopBtn), FALSE);
EnableWindow (GetDlgltem(hWnd, StartBtn), TRUE);

// update status box
SetDigltemText( kWnd, INTStatusBox, "Inactive” ) :

if (nlsIcon) // if app is icon, update display
SetWindowText(hWnd, "DAS-1800 [Inactive]™) ;

if(ADOP == 1) // only allow if started
{
KillTimer(thWnd, ID_TIMER1);
KiliTimer(hWnd, ID_TIMER2);
SetDigltemText( hWnd, INTStatusBox, "Inactive® ) ;

if((Err = K_DMAStop(hAD, &Status, &Index)) 1= 0)
{ // Stop Operation
ProcessError(Err);
. return;
}

Done=1;
ADQP=0;
H

} // end of StopAcquiring

/***t******#**********t********************‘********tt*##**#****#********/

1* GetData Function: */
* */
1* This function will get the appropriate A/D channels for the */
/* thermistor, and pressure transducer and read the data. It then */
* starts the A/D converter to collect the hydrophone data and starts */
™ a 10 ms timer to monitor the status of the A/D board. */
/* _ ' */
/****‘ Fkkk wd gk ¥ A3k 2 e e ke X ‘*******$t$t**t***t*/
void Get_Data(HWND hWnd, DDH James)

{

long int SR, ST,

int PressData;

int TempData,

char ‘ Pchan[80] = {0};

char Tchan[80] = {0},

char Hchan[30] = {0};

75



int PressChan;

int TempCham;

int i

static long Samples;

char TempBuf[80] = {0};

short temp,

short pres;

char PCTime[9],;

char szString[701;

char Xstring[UsedStringSize];

char Xmark[J=" "

if(GPS_FLAG==1)
{
do
{
ProcessCOMMNotification( hWnd, NULL, NULL };
H

while(NOTIFY_FLAG==0),
}

/IGet the pressure transducer A/D channel and read PressData
GetDlgltemText(hWnd, PressChanBox, (LPSTR)Pchan, 10);
PressChan = atol(Pchan);

if((Err=K_ADRead(hDev1800,PressChan,3,&PressData)}!=0)
{
ProcessError(Err);
return;
}

pres=PressData;
// itoa(pres,Pres, 10);

//Get the Thermistor A/D channel and read TempData
GetDlgltemText(hWnd, TempChanBox, (LPSTR)Tchan, 10);
TempChan = atol(Tchan);

if((Err=K_ADRead(hDev1800, TempChan,3,& TempData))!=0)
{
ProcessError(Err);
return;
}

_strtime(PCTime);
temp=TempData;
Hitoa(temp, Temp, 10);

DataTranslation(temp , pres);

76



strepy( szString, *
s

strocpy(szString+8,PCTime, strlen(PCTime)); //add current time

strnepy( szString+20, vtemp, strlen(vtemp)) ; // add index
stcpy( szString+31, vpres, strien(vpres)) ; // add data
strncpy( szString+39, Xmark, strlen(Xmark));

iffGPS_FLAG=1)

{

strnepy( szString+40, NORTH, strilen{NORTH)) ; // add index
stracpy( szString+52, WEST, strlen(WEST)) ;
}
strncpy(szString+65,s2TimeString, strlen(szTimeString));
strncpy(Xstring,szString,68);

SendMessage (GetDlgltem(hWnd, DataUpdateBox),LB_INSERTSTRING, 0, (LONG) (LPSTR)
Xstring},

Store2(hWnd, Xstring);

HInitTime = GetTickCount();
GetDlgltemText(hWnd, NumSamplesBox, (LPSTR)TempBuf, 10); // 10 digit max
ST=atol(TempBuf);
GetDlgltemText(hWnd, SampleRateBox, (LPSTR)TempBuf,10);

SR = atol(TempBuf),
Samples = SR*ST;
ltoa(Samples, TempBuf, 10) ;
SetDlgltemText( hWnd, SamplesPerRead, TempBuf ) ;

NumSamp = Samples ;
NumBuf = Samples/Max_Samp;
/! save the sample number for later
if(Samples%%Max_Samp != 0)// if there is a remainder then allocate another buffer
NumBuf=NumBuf+1;
BufCount = Samples; //set bufcount equal to sample number to keep track of
/fhow many samples are needed in the last buffer

for(i=1;i<=NumBuf;i++)

{
if((BufCount-Max_Samp) >0)
¢ holder = Max_Samp;
BufCount=BufCount-Max_Samp;,
else :

holder = BufCount;

77



if((Err = K_DMAAlloc(hAD holder , (void far * far *)&pDMABuf]i], &hMem([i])) != 0)
{void far * far *)

{

ProcessError(Err);

return;

}

/f tell the frame about the buffer and number of samples
if((Err = K_BufListAdd(hAD, pDMABuf]i],holder )) 1= 0)
{ _

ProcessError(Err);

Teturn;

}

}//end of for loop, i++

ADOP=1; {f Set Operation Flag
Done = 0; {f Clear Done Flag
Status = 0; /f Clear Status Fiag
DataFlg =1,

/! r1eset status/count display
SetDlgitemText({ kWnd, INTTransferBox, "0" ) ;
SetDlgltemText{ hWnd, INTStatusBox, "Active” ) ;

// Start the A/D and get the hydrophone data

/l; Start A'/D MODE
f{(Err = K_DMAStart(hAD)) !=0)
{
ProcessError(Er);
return;
}

// Start a 10ms timer to moaitor status
if(!SetTimer(hWndMain, ID_TIMERI1, 10, NULL))
{
wsprintf(szErr,"Timer1 Error!");
MessageBox(NULL, szErr," Error ", MB_OK | MB_ICONEXCLAMATION);
exit (1);
1

return;
}/end of Get_Data function

h ok ke e o ¥kkkkkkkkkkkkbkkkkkhkkkkkkEx
/ Store2

i

// Function to store Time Depth GPS Temp String
1/

// input string
// stores file with _txt extension
”*#**t***#**************#*#*tt#*#*'t**i#t#

78

i



void Store2(HWND hWnd , LPSTR GenString)
{
unsigned char NameBuf[10};
unsigned char Fsuffx[]=".txt";
FILE *outfile;

int ij;

int th;

unsigned byteswritten;
int p;

int amount;

GetDlgltemText(hWnd, FileNameBox, (LPSTR)NameBuf, 8);

strncat(NameBuf, Fsuffx, 10);

if ((fh = _open( NameBuf,_O_RDWR|_O_TEXT|_O_APPEND|_O CREAT, S IREAD |
_S_IWRITE))!=1);
{

byteswritien = _write( fh, GenString , UsedStringSize);

}
_close( fh ),

}
”*************vav**.** ek kkkkkkERkE e ok ko
/! DataTranslation Function
I/
// Translates Data from A/D units to Voltage and to Depth & Temp
i

JlEERERRRkpkkkkkkkkkkk kR Rk hk kR kR kR kR Rk Rk kR kkE

void DataTranslation(int Temperature , int Pressure)

{

tempvolt = (Temperature * 2.5)/4096;
presvolt = (Pressure * 2.5)/4096;
_govt( tempvolt, 3, vtemp );

_govt( presvolt, 3, vpres );

return;
}

79



// GLOBAL filename suffix
int hydfilesufx=0;

JERdedkkkk kR dkokok ke dok sk deak kdok sk sk skokk ke ko 3 3 ok Xk Yv*ttttt********/

/* ProcessTimer]1 Function

/*

/* This function processes all ID_TIMER]1 events. The acquisition task
/* is monitored here and the transfer count is updated.

/t

*/
*/
*/
*/
*/

/***#t**l***t***************t**t*#*******t******#*******!tt********#***#*/

void ProcessTimerl(HWND hWnd)

{
char TempBuf[20];

int k;
long reaicount;
long realstatus;
if((Err = K_DMAStatus(thAD, &Status, &Index)) |=0)
{
KillTimerthWnd, ID_TIMERI1);
KillTimer(hWnd, ID_TIMER2),
ProcessError(Ern);
StopAcquiring( hWnd) ;
return,
}

// update the transfer counter display

realstatus = Status/256;

realcount = (realstatus-1)*Max_Samp+Index;
Itoa(realcount, TempBuf, 10} ; // base 10
SetDigltemText( hWnd, INTTransferBox, TempBuf ) ;
ltoa(Status, TempBuf, 10) ;

SetDigltemText( hWnd, INTStatusBox, TempBuf ) ;

if((Status & 4)=—4) // overmun

{
KillTimer(hWad, ID_TIMER]1);
KillTimerthWnd, ID_TIMER2);
wsprintf(szErr,"DAS-1800 Overrun Error");

MessageBox(NULL, szErr," Error ", MB_OK | MB_ICONEXCLAMATION);

StopAcquiring(hWnd) ;
returm;
}

if((Status & 1)==0) // finished ?
{

KillTimer(hWnd, ID_TIMER]):
HKillTimerthWnd, ID_TIMER2),
//StopAcquiring(hWnd) ;

SetDlgitemText( hWnd, INTStatusBox, "Inactive” ) ;

if((Err = K_DMAStop(hAD, &Status, &Index)) = 0)

30



{ // Stop Operation
ProcessError(Err);
return;
}
//set data manipulation in process flag
DataFlg = 1;
//convert the data

ShowData(hWnd);//call show data function

StoreData(thWndy,

for(k=1;k<=NumBufk++)
{
if((Err = K_DMAFree(hMem[k])) != 0)
{ // Free memory
ProcessError(Err);
return;
¥
if((Er=K_BufListReset(hAD))!=0)
{
ProcessError(Ermr);
return;
}
}/end of for loop(i++)
{Done =1,
/TADOP = 0;
DataFlg = 0,
return;
}

} #/ end of ProcessTimer

”%#* * Hkkkkk bk b r kb kR kkkkkk
/{ StoreData function

i

i

/ Procedure to store hydrophone data

Fiaad it P LI SR PR PE S T TR T2 2 e Y e e

void StoreData(HWND hWnd)
{

unsigned char NameBuf[10];
unsigned char Fsuffx[4];
FILE *outfile;

void *pData;

nt ij;
int fh;

81



unsigned byteswritten;
short sdata;
int p;
int *PING;
int amount;
i=0;
i+
hydfilesufx++;

GetDlgltemText(hWnd,FileNameBox,(LPSTR)NameBuf, 8);
itoa(hydfilesufx Fsuffx,10),

strncat(NameBuf,"_hyd.",10);

strncat(NameBuf, Fsuffx, 10);

if (fh = _open( NameBuf, _O_RDWR |_O_BINARY | _O_CREAT, _S_IREAD | _S_ITWRITE))!=-1);
{
amount = Max_Samp;
for(p=1;p<=NumBuf;p++)
{
if(p=NumBuf)

amount = holder;

pData= (void *)pDMABuf[p];

byteswritten = _write( fh, pData , amount);

H
}
_close(fh);

Y//end of StoreData function
/********#**#******###*#***#*******#**t***********; sk ok ok /
” ProcessTimer2 Function */
1* *
/* This function processes timer events defined by the timer */
/* interval. It checks to see if the sample time has been met, */
/* If it has, it will stop acquiring data. Otherwise will will */
{* call the sample data function to continue data acquisition. */
”* */
/#******** %% k%3 Rk * kkkFkkkkkkkkkkk 2 2k o ok o 2 ok 3 /
void ProcessTimer2(HWND hWnd)

{
long CurrentTime;
long ElapsedTime;
long StopTime;
int NumSamples=0;

char Sarinimef&O] = {0};

82



CurrentTime = GetTickCount(};
ElapsedTime = (CurrentTime - InitTime);
ElapsedTime = ElapsedTime/1000; // convert to seconds

GetDlgltemText(hWnd,SampTimeBox,(LPSTR)SampTime,2);
StopTime = atol(SampTime),
StopTime = StopTime*60;//convert from minutes to seconds

if(ElapsedTime > StopTime)
{
StopAcquiringthWad);
return,
H
if(DataFlg == 0)
{
Get_Data(hWnd,hDev1800);
H
//ShowDatathWnd),
//++NumSamples;

ltoa(ElapsedTime,szTimeString, 10);

return;
1

/tt*#******************t**#****t#***#**#*##**t*###***********************/

/* ProcessError Function *f
* */
/* This function displays an error message and the argument passed */
/* as error number. */
1* *f
/* w k¥ :*** ek Ak kg ko e e 2k 2w ok ok */
void ProcessError(short ErrNum)
{

wsprintf{(szErr,"DAS-1800 Error = %4x", EmNum);

MessageBox(NULL, szErr,” Error ", MB_OK | MB_ICONEXCLAMATION);
}
”******t* 3 3 ok sk sk e ake 3k ok ke ok 3 ok ok 2k ok e ok ok o e ok o e ok o o ok
/{ LatLong
I
/#  Function for parsing latitude and Longitude
ﬁ7 e 2 13 ] k3 sk o o Ak kg EgkE

void NEAR LatLong(HWND hWnd, LPSTR strip , int nLength)
{
int i
char  stringl[]="o0c000000x";
char  string2[]="xx0o00000x",
char strf]= "$PMVXG,021";
float CurrentTime;
float ElapsedTime;
char  *pdest;

83



int result;

north = string1;

west = string?;

pdest = strstr( strip, str );
result = pdest - strip + 1;

if(pdest[31]="N")

{
if{( pdest[44]="W")
{
if(pdest[38}=""
{
if{pdest[50]=""
{
if(pdest[25]=.")
{
for(i=0;i<10;i++)
{
i(isdigit(pdest[i+33])}| ispunct(pdest[i+33]))
{
west[i]=pdest[i+33];
NOTIFY_FLAG=1,
H
else
{
NOTIFY_FLAG=0,
return;
}
}
for(i=0;i<9;i++)
{
if(isdigit(pdest{i+33])|| ispunct(pdestfi+33]))
{
northfi]=pdest[i+21];
NOTIFY FLAG=1;
}
else
{
NOTIFY_FLAG=0;
return;
¥
}
3
}
}
3
}
strepy(WEST, west),
strcpy(NORTH, north);
return;
}

84



flanbd it Bl it Sa R P2 222 PR T2

#/ OpenGps function
// function to open port for gps data retrievat
i

/****t***************************[

BOOL NEAR OpenConnection{ HWND hWnd )

{

char  szTemp{10];
BOOL  fRetVal;
HMENU hMenu;
NPTTYINFO npTTYlInfo;

/f open COMM device

if ((COMMID = OpenComm( which_comm , RXQUEUE, TXQUEUE )) < 0)
return ( FALSE ) ;
COMDEV(npTT YInfo)=COMMID;
fRetVal = SetupConnection{ hWnd ) ;

if (fRetVal)
¢ CONNECTED( npTTYiInfo ) = TRUE ;
// Enable notification for CN_RECEIVE events.
/{ EnableCommNotification( COMDEV( npTTYInfo ), hWWnd, MAXBLOCK, -1 )

// assert DTR
EscapeCommFunction({ COMDEV( npTTYInfo ), SETDTR ) ;

3

else

{
CONNECTED{ npTTYInfo ) = FALSE :
CloseComm({ COMDEV( npTTYInfo ) ) ;
}

return ( fRetVal ) ;

1 // end of OpenConnection()

i

i
i
f
i
i
i
i
i
i
H

LRESULT NEAR CreateGPSInfo{ HWND hWnd )

Description:
Creates the information structure used for GPS setup

Parameters:
HWND hWnd
Handle to main window.

85

S



LRESULT NEAR CreateGPSInfo( HWND hWnd )
{

NPTTYINFO npTTYInfo;

if (NULL == (npTTYInfo =
(NPTTYINFO) LocalAlloc( LPTR, sizeof( TTYINFO ) )
return ( (LRESULT) -1} ;

// initialize TTY info structure

COMDEV( npTTYInfo ) =0,
CONNECTED( npTTYInfo) =FALSE:
CURSORSTATE( npTTYInfo) =CS_HIDE;
LOCALECHO( npTTYInfo} =FALSE;
AUTOWRAP( npTTYInfo) =TRUE;
PORT( npTTYInfo ) =2,

BAUDRATE( npTTYInfo) =CBR_4800;
BYTESIZE( npTTYInfo) =8§;
FLOWCTRL npTTYInfo) =FC RTSCTS;
PARITY{ npTTYInfo ) =NOPARITY ;
STOPBITS( npTTYInfo) =ONESTOPBIT;
XONXOFF(npTTYInfo) =TFALSE;
XSIZE( npTTVYInfo ) =0

YSIZE{ npTTYInfo ) =0;
XSCROLL( npTTYInfo) =0;
YSCROLL( npTTYInfo) =0;
XOFFSET( npTTYInfo) =0:
YOFFSET( npTTYInfo) =0;
COLUMN( npTTYInfo ) =0;
ROW(npTTYInfo)  =0;
HTTYFONT(npTTYInfo) =NULL;
FGCOLOR(npTTYInfo) =RGB(0,0,0);
USECNRECEIVE({ npTTYInfo } = TRUE :
DISPLAYERRORS( npTTYInfo ) = TRUE ;

SetWindowWord( hWnd, GWW_NPTTYINFO, (WPARAM) npTTYInfo ) ;
return ( (LRESULT) TRUE ) ; }

I
#/ BOOL NEAR SetupConnection{ HWND hWnd )

i

/! Description:

// This routines sets up the DCB based on settings in the
/' GPS info structure and performs a SetCommState(),
i

// Parameters:

//  HWND hWnd

86



i
i
i

BOOIL NEAR SetupConnection{ HWND hWnd )
{

BOOL  fRetVal;
BYTE bSet ;
DCB dcb;

NPTTYINFO npTTYInfo

if (NULL == (npTTYInfo = (NPTTYINFO) GetWindowWord( hWnd, GWW_NPTTYINFOQ)))
return ( FALSE ) ;

GetCommState(COMMID |, &dcb ) ;
// COMDEV( npTTYInfo )
dcb.BaudRate = CBR_4800; // BAUDRATE( npTTYInfo ) :
dcb.ByteSize = BYTESIZE( npTTYInfo ) ;
dcb.Parity = PARITY( npTTYInfo ) ;
dcb.StopBits = STOPBITS( npTTYInfo ) ;

// setup hardware flow control

bSet = (BYTE) (FLOWCTRL( npTTYInfo ) & FC DTRDSR) |=0) ;
dcb fOutDsrFlow = dcb.fDtrflow = bSet ;
dcb.DsrTimeout = (bSet) 730 : 0 ;

bSet = (BYTE) (FLOWCTRL( npTTYInfo ) & FC_RTSCTS) 1=0) ;
dcb fOutxCtsFlow = deb.fRtsflow = bSet ;
dcb.CtsTimeout = (bSet) 730 : 0 :

/{ setup software flow control

bSet = (BYTE) (FLOWCTRL( npTTYInfo ) & FC_XONXOFF) I=0) ;
dcb.fInX = dcb fOutX = bSet ;
dcb.XonChar = ASCII_XON ;

dcb. XoffChar = ASCII_XOFF ;
dcb.XonLim = 100 ;

dcb. Xofflim = 100 ;

// other various settings

dcb.fBinary = TRUE ;

dcb.fParity = TRUE ;

dcb fRtsDisable = FALSE |
dcb.fDtrDisable = FALSE ;

fRetVal = I(SetCommState( &dcb ) < 0) ;
return ( fRetVal ) ;

} // end of SetupConnection{)
/

87



// BOOL NEAR ProcessCOMMNotification( HWND hWnd, WORD wParam, LONG IParam )
i

/! Description:

/I Processes the WM_COMMNOTIFY message from the COMM.DRV.

i

// Parameters:

{/  HWND hWnd

H

H

// WORD wParam

/" specifes the device (nCid)

i

// LONG IParam

i LOWORD contains event trigger

i HIWORD is NULL

i
/

BOOL NEAR ProcessCOMMNotification( HWND hWnd, WORD wParam, LONG IParam )
{

char  szEmor{ 10 ] ;

int nError, nLength ;

BYTE abIn[ MAXBLOCK + 1] ;

COMSTAT ComStat ;

NPTTYINFO npTTYInfo ;

MSG msg ;

int i=1;

do
{
if(nLength = ReadCommBlock( hWnd, (LPSTR) abln, MAXBLOCK ))
{

LatLong(hWnd , (LPSTR) abln, nLength);

}
if (nError = GetCommError( COMMID, &ComStat ))
{

}
i 4

/1 if (DISPLAYERRORS( npTTYInfo ))
i
// MessageBox( GetFocus(), "GPS Problem",
/ "GPS Comm Error",MB_OK ) ;
// wsprintf( szError, "<CE-%d>", nError ) ;
i}
i}
}
while ((PeekMessage( &msg, NULL, 0, 0, PM_NOREMOVE)) ||
(ComStat.cbInQue >= MAXBLOCK)) ;

return ( TRUE } ;
} // end of ProcessCOMMNotification()

28



.
/I int NEAR ReadCommBiock( HWND hWnd, LPSTR lpszBlock, int naMaxLength )
i

/1 Description:

/I Reads a block from the COM port and stuffs it into

/{  the provided block.

i

// Parameters:

#  HWND hWnd

1

i

/f LPSTR lpszBlock

/f block used for storage

i

/ int nMaxLength

i max length of block to read

H
1/

int NEAR ReadCommBlock( HWND hWnd, LPSTR IpszBlock, int nMaxLength )
{

char  szError[ 10] ;
int nLength, nError ;
NPTTYINFO npTTYInfo ;
nLength = ReadComm( COMMID , IpszBlock, nMaxLength ) ;
return { nLength ) ;
+ // end of ReadCommBlock()
AMPL.h Include File
#include <windows.h>
#finclude <string.h>
#include <stdlib.h>

#define IDS_ERR_REGISTER_CLASS 1
#define IDS_ERR_CREATE_WINDOW 2

#define StartBtn 101
#define StopBtn 102
#define CloseBtn 118
#define ContBox 124
fidefine StartChanBox 104
#define StopChanBox 105
#define NumSamplesBox 108
#define SampleRateBox i10
#define INTStatusBox 113
#define INTTransferBox 114
#define INTTransferBox 114
#define DataL istBox 119
#define ID_TIMER1 1

#define ID_TIMER2 2

#define FileNameBox 131

89



#define WriteStatusBox 132

#defire DataUpdateBox 145
#define SamplIntBox 146
#define SampTimeBox 147
#define gps_connect 200
#define gps_disconnect 201
#define COMM_1 888
#define COMM 2 999
#define Max_Buf 72
#define Max_Samp 65000

Amp2.h Include File

char szString[128]; /* variable to load resource strings */
char szAppName[20]; /* class name for the window */
HWND hlnst;

HWND hWndMain:

LONG FAR PASCAL WndProc(HWND, UINT, UINT, LONG);
int nCwRegisterClasses(void);

void CwUnRegisterClasses(void);

void InitWindowFields¢{ HWND hwad );

void InitDASDevice(void) ;

void ReleaseDriver(void) ;

void StartAcquiring(HWND hWnd) ;

void StopAcquiring(HWND hWnd) ;

void ProcessTimer(HWND hWnd);

void ShowData(HWND hWnd) ;

void ProcessError(short ErrNum) ;

void OpenGps(HWND hWnd), // Functions for GPS info
void ReadGps(HWND hWnd);

void DisplayGps(HWND hWnd);

void CloseGps(tHWND hWnd);

void ProcessTimer2(HWND hWnd);

void Get_Data(HWND hWnd, DDH James);

void StoreData(HWND hWnd);

void DataTranslation(int Temperature , int Pressure);

void Store2(HWND hWnd , LPSTR GenString);

gps.h Include File

i
i
{1/ Module: gps.h

i

/1 Purpose:;

// Includes prototypes for GPS procedures
"
i
i
/I Written by Microsoft Product Support Services, Windows Developer Support.
/f Copyright (¢} 1991 Microsoft Corporation, All Rights Reserved.

90



i
/i

#define WIN31 // this is a Windows 3.1 application
#define USECOMM  // yes, we need the COMM AP
#idefine STRICT  // be bold!

#include <windows.h>

#include <commdlg.h>

#include <string. h>

#include "version.h"
#include "resource.h"

// constant definitions

#define GWW_NPTTYINFO 0
#define ABOUTDLG_USEBITMAP 1

#define ATOM_TTYINFO 0x100
// terminal size

#define MAXROWS 25
#define MAXCOLS 80

#define MAXBLOCK 3000 //change by Jay
#define MAXLEN TEMPSTR 100

#define RXQUEUE 4096
#define TXQUEUE 100

// cursor states

#define CS_HIDE 0x00
#define CS_SHOW 0x01
// Flow control flags

#define FC_ DTRDSR 0x01
#define FC_RTSCTS 0x02
#define FC_XONXOFF 0x04
// ascii definitions

#define ASCII_BEL 0x07

#define ASCII_BS 0x08
#define ASCII_LF 0x0A
#define ASCII_CR 0x0D

#define ASCII_XON 0xI1
#define ASCII_XOFF  0xI3

// data structures

91



typedef struct tagTTYINFQO
{
int idComDev ;
BYTE bPort, abScreen] MAXROWS * MAXCOLS | ;
BOOL fConnected, fXonXoff, fLocalEcho, fNewLine, fAutoWrap,
fUseCNReceive, fDisplayErrors;
BYTE bByteSize, bFlowCtrl, bParity, bStopBits ;
WORD wBaudRate, wCursorState ;
HFONT hTTYFont;
LOGFONT UTTYFont ;
DWORD rgbFGColor ;
int  xSize, ySize, xScroll, yScroll, xOffset, yOffset,
nColumn, nRow, xChar, yChar ;

} TTYINFO, NEAR *NPTTYINFO ;
// macros ( for easier readability )
#define GETHINST( hWnd ) ((HINSTANCE) GetWindowWord( hWnd, GWW_HINSTANCE »

#define COMDEV( x ) (x -> idComDev)

#define PORT(x) (x -> bPort)

#define SCREEN( x } (x -> abScreen)

#define CONNECTED( x ) (x -> fConnected)
#define XONXOFF( x ) (x -> fXonXoff)

#define LOCALECHO( x } (x -> fLocalEcho)
#define NEWLINE( x ) (x -> fNewLine)

#define AUTOWRAP( x ) (x -> fAutoWrap)
#define BYTESIZE( x ) (x -> bByteSize)

#define FLOWCTRL( x ) {x -> bFlowCtrl)
#define PARITY( x ) (x -> bParity)

#define STOPBITS( x ) (x - bStopBits)

#define BAUDRATE( x ) (x ~> wBaudRate)
#define CURSORSTATE( x ) (x -> wCursorState)
#define HTTYFONT( x ) (x -> hTTYFont)
#define LFTTYFONT( x ) (x -> IfTTYFont)
#define FGCOLOR( x ) (x -> rgbFGColor)
#define XSIZE( x ) (x -> xSize)

#define YSIZE( x ) (x -> ySize)

#define XSCROLL( x ) (x -> xScroll)

#define YSCROLL( x ) (x -> yScroll)

#define XOFFSET( x ) (x -> xOffset)

#define YOFFSET( x ) (x -> yOffset)

#define COLUMNY( x ) (x => nColumn)

#define ROW( x ) (x -> nRow)

#define XCHAR( x ) (x -> xChar)

#define YCHAR( x ) (x -> yChar )

#define USECNRECEIVE( x ) (x -> fUseCNReceive)
#define DISPLAYERRORS( x ) (x -> fDisplayErrors)

#define SET_PROP(x,y,z) SetProp( x, MAKEINTATOM(y), z)

#define GET_PROP(x,y) GetProp( x, MAKEINTATOM(y) )
#define REMOVE_PROP( x, y ) RemoveProp( x, MAKEINTATOM(y) )

92



/f global stuff
char gszTTYClass[] = "TTYWndClass" ;
char gszAppName[] = "TTY";
HANDLE ghAccel ;
WORD  gawBaudTable(} = { CBR_110,
CBR_300,
CBR_600,
CBR_1200,
CBR_2400,
CER_4800,
CBR_9%600,
CBR_14400,
CBR_19200,
CBR_38400,
CBR_56000,
CBR_123000,
CBR_256000 };

WORD  gawParityTable[] = { NOPARITY,
EVENPARITY,
ODDPARITY,
MARKPARITY,
SPACEPARITY } ;

WORD  gawStopBitsTable[] = { ONESTOPBIT,
ONESSTOPBITS,
TWOSTOPBITS )} ;

// function prototypes (private)

BOOL NEAR InitApplication{ HANDLE ) ;

HWND NEAR InitInstance{ HANDLE, int ) ;

LRESULT NEAR CreateGPSInfo{ HWND ) ;

BOOL NEAR DestroyTTYInfo{ HWND ) ;

BOOL NEAR ResetTTY Screen( HWND, NPTTYINFO ) ;
BOOL NEAR KillTTYFocus( HWND } ;

BOOL NEAR PaintTTY( HWND ) ;

BOOL NEAR SetTTYFocus( HWND ) ;

BOOL NEAR Scroll TTYHorz( HWND, WORD, WORD ) ;
BOOL NEAR ScrolITTY Vert{ HWND, WORD, WORD ) ;
BOOL NEAR SizeTTY( HWND, WORD, WORD ) ;
BOOL NEAR ProcessTTY Character{ HWND, BYTE ) ;
int NEAR ReadCommBlock( HWND, LPSTR, int )
BOOL NEAR WriteCommByte( HWND, BYTE ) ;

BOOL NEAR MoveTTYCursor{ HWND ) ;

BOOL NEAR OpenConnection( HWND ) ;

BOOL NEAR SetupConnection{ HWND ) ;

BOOL NEAR CloseConnection{ HWND ) ;

BOOL NEAR ProcessCOMMNotification( HWND, WORD, LONG ) ;

void NEAR LatLong(HWND hWnd, LPSTR strip , int nLength),

VOID NEAR GoModalDialogBoxParam( HINSTANCE, LPCSTR, HWND, DLGPROC, LPARAM ) ;
i
// End of File: gps.h
i/

93



I_XEPendix C

Calculations

94



APPENDIX C

Calculations.
Pressure Hausing Analysis
., b .
Psea water = 64-—; Density of sea water.
- i

b = 500-ft Design depth.

i Acting pressure at design depth.
P =P sea_water &R 9P esign depth
P =222.222 psi
P :=250-psi Design pressure requirement.

Stresses experienced by the pressure housing.

Modes of failure: 1. Yielding
2. Instability
3. Buckling

Design stresses for yielding:

P,:=250-psi  External pressure.

P; =147 psi Internal pressure.
To:=45in Outside radius of the housing.
Tj:=4in Inside radius of the housing.
ri=r, Radius under investigation.
P.-P.
2 2_p2p 270 1
Pyt ~PoTo -1{Tg" 2

Tangential stress experienced by the housing.

Reference Shigley,

o =-2.022 10° psi 95 Machine Design 1989.



P_-P.
2 2 270771
Plrl Porg +ri%r % >
o= ! Radial stress experienced by the housing.
T 02 -T i2
6 =-250 *psi
Design stresses for Buckling:
E =104 106-psi Young's Modulous.,
v:=.29 Poisson's Ratio.
t=5m Shell thickness.
R =4in Radius.
L¢=idin Length between frames.
5
il
py =—242E 2R

Py =1.603-10* «psi

Pressure necessary for failure by buckling.

Reference Sedor,
Class notes.
96 OE 754/854



Maximum pressure for General instability:

L:=Lg The distance between frames or endcaps.

_=®R
m o —

L

n:=2
I:=5in* Moment of inertia.
p _Et m* (nz— I)-E-I

TR 2 m’ 2 RL

n+—-1 -(n2+m) f

P o =2257°10° -psi

97

Reference Sedaor,
Class notes.
QE 754/854



Appendix D

Hydrophone Specification Sheets

98



0°0L1~

07091~

0°0s1~

0°0%1-

0°0et-

AR

edn/agq

T = R W w W WA T
ﬂ
AYVOLYYORY I SILLSNOIY HILVMUIONN I “__ E
FOILY LOCUEIOTY NCOLA VOIS 10«60 It “ 1}
SAINCRILLIDIATA NOLYYdS
HAINZD IYIINHDIL MBY — I -
1
i . H T
i i i |
M 18 il 1
1] |
! 4 L
13 P 3 _
11 H Hiiid. 4 |4 -1 ' -]- H 11 1 1434 _a 1 ¢|..._ -
H- 1 L] 141 ]
jifihie il {EaiNEN
, , i i
I [1H1] n i L + bt
. {HEHEEES -
HHIHH H It a “__il |
Rt _
.n_._ ““ il - ~
| | it d |
i H
| | |
I i
| I
‘__n_,._,
i 77 = i T
Illlm.%uluoununao i : : ~t-1-1
[TH
BTG 752 1m0 I
72 HLd2d i I M¢;
\h N/S
arrlhrrr J Jod .,
I W28l- ‘SNIS Y ZLAIH 00/
i i | 7 e hl ! ! _ ] h !



S T T TR TS o 2T T Fe/UL NAE EI-8I10-EF
WU_ZDE.PUWJNZD._.EEW

24Y UF A0S 1
- Q.,s.w\ drdd Oak! vo2! 000/ o'as 0’02 00, ooz o
LIS LI A ) G L R .—-..-..-...-...._...-.-.—.-..uu...-..--...-q-.q._.-.._-.-._-
£9/-
09/~
]
N y.u’N - -
\ - P g ol Y
Y S @sr-
T
oh 1
L\
abliskadaisiiialal, -.-.—-..-.--_-..“—-.-—-..--n--.--.-. A NN AN R M RARITARANIIIANMIINANRNITIY N
o/ A8 GUS3L T 7 ovy SNLdvds Jra00s| @ ah> loo-L8iz-0gl 40 1334 052 HLlf

WE7'Z  Wda ™ 95 dHaL baLv
SWig T AVT30 3AT3034 “Sx7p)7 T ALYO TIANVS
Y e L ] Chad s oyt |

NP farqp S 28~ SNIS Nity BLI3FH 00!




e LY Mg k) )

A0418

ERIT Jdond 4no

%..m oanzi+

L w3y

1L in

h

rr

n | I8

wm L))




égpendix E

Pressure Specification Sheets

102



URMEEC |20

KPS|

APPLICATIONS

® Stormwater

® Well Monitoring
® Dewatering

® Dams

® Pump Control

@ Lift Stations

® Drydocks

® Water Towers

® Slug Tests

® Reservoirs

@ Soil Remediation
® Irrigation Ponds
¢ Tank Level

® Oceanographic Research

FEATURES & BENEFITS
%

HIGH STATIC ACCURACY & REPEATABILITY:
Guarantees reproducible measurements,

WELDED 316 SS CONSTRUCTION:
Trouble-{res operation for demnuding applications.

SMALL RUGGED PACKAGE:
Withstands severe environmental conditions.

CALIBRATED & SERIALIZED:
Insures performance and NIST traceability.

BROAD SELECTION OF PRESSURE RANGES:
A standard range for your specific requirements.

UNIQUE CABLE SEAL SYSTEM:
Ensures water-light integrity.

FULLY TEMPERATURE COMPENSATED:
Accurate dara over extrome temperature excursions.

INSTRUMENTATION SIGNAL COMPATIBLE:
Uperates with popular datalnggers, displays/controliers,
SCADA ond computcr data acquisition systems.

SERIES 200 S and 210 S
SUBMERSIBLE PRESSU
TRANSDUCER '

OPERATION

Series 200 8 and 210 § trunsducers urv specifically
designed to meet the rigorous environments encountered
in liquid level measurement applicetions. These
transmittcrs  provide repeatable, precision depth
measurements under the most hostile eonditions. Thege -
units are designed for installation in a Class 1. Division
1, Groups A, B, C, and D, Class II, Division 1, Groups E,
¥ and (i, Class 111, Division 1 hazardons location when
connected 10 appropriatc Stahil appuraiuy,

All KPSI ransducers incorporate our isolated diaphragm
sonsors which are specifically. designed for uso with
hostile fluids and gases. These sensors utilize & silicen
pressure cell thar has been fitted into a stainiess steel
package with an integral, compliant stainlcss stecl barricr
diaphragm. This sensor assembly is honsed in a rmgged
316 SS caso which pruvides for a variety of prossure
inputs as well as electrical output connections.

Serics 200 S and 210 S transducers festurs high
performance intemal signal conditioning  They are
availuble in both 4 10 20 mA and 0 10 § VDC output
vorsions. Units are identical except for static aocuracy.

Cach KPS] transmitter is shipped with a calibration card
specific to that trancmitter.” The card specifies VO
conditions as well as acrual data refiecting the unirs
static accuracy and thermal charaoteristics. Custom
calibration is available for those applications where mare
extensive data is required.



L
8}

T Ee e

o)

KP5I

Coaro ’0\
, Fax Fax Fax
To: Chris Pachaco From : Kennsth {3. Lenz Kg
Company: University of New Hampshire Date : 02/20/96 11:20 AM
QOcean Engineering Departmant
Durham, NH 03824 Pages: 3
Phone : {603)862-4482 {including Cover}

Fax :(603)882.0241

Subject : Quote ; Series 2005 Submoersible Pressure Transducer

Dear Mr. Pacheco:
Thanks for your call.

| have listed below pricing and delivery information and included the engineering
specifications for aur series 2008 siubmarsible preasslre transducer. It mors informatien is
needed, please call me at (800) 328-3665.

Item Qty Description Unit $ Total &

1 1 Series 2008 submersible pressure transducer | 8595.00 $595.00
Range : 0-260 pais
Giitputi-4~2@mmdde- © -5V 0 Dwie

Spacitications per data sheet

2 3 ft | Polyurethane cable $1.65/4t | $4.95

34 Rescarch Drive, Ilampton, Virginia Ph: 800-678

Delivery : 4 waeks ARO. Expaditing services as follows :
10 business days : $30.00 each transducer

5 business days : $60.00 each transducer
FOB : Hampton, VA 230608

Terms : Net 30 days upon epproved credit, Master Card / Visa.

Quotations are in U.S. funds, valid for 80 days and subject to KPSI’s standard
terms and conditions. -

[

Keller PNI, iInc., a Pressure Systems Subsidiary
7226 Fx: 804-865-8744 Internct: Kpsi@crash.cts.com

et e MO s Ll



FROM @ KPSI BCEANSIDE, CA

BILL TO ADDRESS

CO: U OF NEW HAMPSHIRE

_ DV: PURCHASING FX:
%%: ELIZABETH DEMERITT HOUSE Eﬁ:
CY: DURHAM DT:
ST: NH CT: USA gg:

PHONE NO. @ 619 9687 8563

Feb. 2B 1996 01:85PM

CHAVGE OPDER

KPSI

: SHIP UPS GROUND, PREPAY AND ADD.

603-862-4256
603-862-0241
CHRIS
PACHECO
2/28/96
3/1/96

HOUSE

UPS GROUND

: NET 30

603-862-4256

SHIP TO ADDRESS
CMP: U OF NEW HAMPSHIRE

AD1: ATTN: CHRIS PACHECO
AD2: 24 COLOVQOS RD

CTY: DURHAM

STA: NH CNT: USA

ZIP: 03824

PO: URM6EC120
FAX: 603-862-0241

H
e p—

( ****PLEASE NOTE: EPEDITED SHIPMENT - 10 WORKING DA;ghﬁﬁ\"h
P

%~ Order Acknowlect-gement

le%tigpf to 619-967-0563
i (el otlee—— JafeRe(
THANKS, J
CAROLA
# . por——1 —
_tm Qty - Unt Series Pressure Output Unit TOTAL
j 1 X : SURBR 2008, 0-250 PSIG, 0-5 VDC P :$595§00 : $§95.
2 3 POLY CABLE, 3 FT ON 1 EA OF ITEM 1 : $1.65 £4.
3 1 SERIES 810, VENT FILTER : §06.00 : 50.
e 1 . 2 WEEKS EXPEDITED DELIVERY (ﬁf:EEE:EE:) $30.
Post-it* Fax Note 7671 [Date X 50.
g me&‘V‘.FFE‘{Q'pageS’ |
fcwoeml_f =T — ClninPoleger $0.
Phone # ,; 5/'/‘/ H -
_Fax#r - 23786 - Hubd, %0
26(4-967-0903 o3y PE) ~cau |
$0.
- : $0.
TOTAL: $629.
PD: 2008 KP: KVB AN: EAST CG: W Oc¢/Hm: O UN: 1 - RD: T:\.S:

Keller PS)’. Inc., a Pressure Systems, Inc. Subsidiary



SERIES 200 S and 210 S SUBMERSIBLE PRESSURE TRANSDUCER

Pressure Range.............. 0-5 throtllzgh 0-300 PSIG, PSIS £Q SP © 80°
Static Accuracy* +0.25% FSO BFSL (200 §) 8.625 .25
£0.1% FSO BFSL (210 §) l S
Thermal Error** ..........0.05% FSO /° C worst case 7(
Proof Pressurs................ 1.5 X rated pressure . - g =
Burst Pressure................ 2.0 X rated ];re.uure * _
...................... 3tma. -
Resolution Infinitest 3 zon
*Static accuracy includes the combined errors dus to £1.000 b ——— 3,09 +.06 —-
nonlincarity, hysteresis and non ilily on a Best Fit ] 378 +.15
Straight Iine (BFSL) basis, at 25°C per ISA S51.1.
;:Tgermgl eéror 5 thf maﬁcimum a:{‘owable deviation ftom
o Best Fit Straight Line due to a change in ternporaturc, .
per ISA §51.1 1/47 NPT MALE s SCREW ON ADAPTER
ENYIRONMENTAL : "
Comp, temp. range......... 0"Cto50°C (\ ) e
Operating temp. range...-10°C t0 60°C =
ELECTRICAL
IExcitact:.ion ....................... 29 to 30 VDCim
apul Current ..........o..... 0 mA maximum
OUPUE.... . e 0-5 VDC (3 wire) /2 NET ML
Wiring Red ~+, Blugk =«
White = Signal
4-20 mA (2 wire)
Wiring Red =+, Black =. .
Zero offset, max ........... 05 VDC: » 60mV :
) 4-20mA: 1 .12mA l— 225 .
Ouiput impedance ......... <10 ohms
Insulation resistance...... 100 wegoluns ul 50 VDC OPTIONAL 1/2" CONDUIT FITTING
CrIrcuit protection .......... Polarity, surge, shorted ountput SIIOWN INSTALLED
7 oz (not including cablc) LOOP RESISTANCE vs
Polyurethane jacketed shielded 1750 LODF FUWER SUFPLY
cable with pofyethylonc vent tube —_ et
&nd Kovlar tension members. S 100
200 Ibs pull strength. Conductors -~ 1250
are 22 AWG. Appruximate @
weight is 0.04 IWh. Tefzel jacket g 1000
optional. ) . 5 70
Pressure connection....... Ported nosepiece with provision 1 00
for attaching weights. Optional o«
field removable 174" Male NPT & oo
screw.an adapter. ] 0
Wetted materials............ 316 85, fluorocarbem 0 10 20 10 0 50
Noie: Consult factory for highly corrosive media, tighter Loap Power Supply Volloge, Vps (V)
tolerances on environmental specifications and special
low/high pressure applications. (Dimensicn in Inches)
Warranty: KPS] warrants its products ageinst defects in inaterial end workmanship for 12 months from date of shipment. Praducte nnt suhjected 1o
misuse Will be repaired or replaced, FOREGOING 1S TN 1IRIT OF ANY OTHER EXPRESSED OR IMPLIED WARRANTIES,” KPS]

reserves the right to make chanpes 1o any product herein and sssumoc no liability arising out of the applications or use of any preduct or circuil
descrihed. Products described in tiis Spevification ure not intended for ife suppon applications

Califarnis: R00.32R-366% / 619.967-6066 / FAX: 619-967-08¢63 Virginia: 800-678-7226 / 804-865-1243 / FAX: 804-865-68744
503 Vista Bella #11, Ocoanside 92057 34 Rozearch Drive, Hamprion 23666
Fax-ouw~-Drewand Service; 619-567.8363 Internet: kpsi@erash.cts.com

Rev. C (12/94) .
" KPSt
Keller PST, u Pressure Systems Ine. Subsidiary . .



KELLER-FS1 CALIBRATION REFORT

Cusiceer:

4

-
r

REITY GF NEW HAMPSHIRE
T

Model Ho: 2005-139-00250
Seriai No: 781719
Pressure Range: ¢ o 250 f8IR
Ezcitation: 9-30 VBL
Gutout: -3 VDL
Teet §F5L Run $l----——  mmeee Fun #
Pressure fs Teao Re Tesg Error fis Tear
PEIS Sutsuts Outouts iFSD futouts
-4 0080 ¢,031 8, 0289 ~, 050 3.9298
S0, 0083 1,031 1,431% 4,402 1.4318
190,0138 2,031 3.40328 $,028 2,033
15,0024 3038 3.0322 9,02 3.0324
19,9598 4,031 4,030 =314 4.0304
249,9973 5.031 S.0263 -, (8 3.8287
19%.9872 4,034 4,0318 0,925 §.0321
149,9994 .83 3.4328 4,437 3.0328
1009970 2,031 2,433 £.041 2.932¢
48,5778 FIRIRSS 148371 3.028 1.0328
3, 0000 .43 (.039G -3, 048 3.6294

Maxisua Static Ervor:

Mauimus Non-Repeatability:

-.086 IFSC

9,008

-0.408
-.678

Viw

.83

a {77
e ldadad

#0633
0,934
-4.040

Maxisuns Therma!l

Maximue Thereal

Test fate: 43-01-Gf
fest Excitatien: !5 VEC
Teet Temperatures: Rooe = 25 ©
Leld = 4 L
#if = 50 L
PLU SERIALY = 0400
Rup §3~--——-  meee— fun #4------
Cd Teas Errar Ht Tesn Error
futpute 4FSE Butpuis IFSD

{0830
L.0228
2934

30377

Error &

-0,01%
-, 097
.09
2,605
4. 099
$.011
£.009

30373 £.003
2,034 R
10238 -G, 008
9.0138 -E3L5

-

o
e
oy
el

10438

2.0443

3.0435 4.41¢
§.0413 8.008
&.0358 R
4.0417 3,009
30425 4,009
2.0440 4.01¢
10428 2,40%
{.04409

#.008



@ D G. O'Brien, Inc.

PAGE 1 OF 1
QUALITY CONTROL TEST REPORT
CUST. P.0. DGO JOB NO 620 |
CUST. ITEM NO. DGO PART NO. :
CUST. DWG. NO. DGO ITEM NO. ool § 0o 2,
CUST. SPEC NO. DGO PC SHT NO. —
DGO PART NO. _JStrvicey
DGO TEST PROCEDURE PER G. SEDOR
A) HYDROSTATIC PRESSURE TPLK-105 REV _8 _ pass v~ FarlL —

HYDRO AT 50@ PSIG FOR 3¢ MINUTES CLOSED FACED. THERE WILL BE NO
LEAKAGE, MECHANICAL DAMAGE OR IMPAIRED ELECTRICAL CHARACTERISTICS

EQUIPMENT USED CALIBRATED CAL DUE
PRESSURE GAUG‘ELT: 305 =i —G5— Yt~ 96

TESTER w__ DATE 3~27-%4

B) CONTINUITY TPCR-165 REV _D _ pass o~ Farn _
PERFORM CONTINUITY THROUGH EACH CONDUCTOR USING A BEEPER.

C) WITHSTANDING VOLTAGE TPHP-105 REV _F _ PASS o ~FalL ___

PIN TO PIN 350 VAC OR 50@ VDC, PIN TO SHIELD AND PIN TO BODY
35¢ VAC OR 50@ VDC, SHIELD TO SHIELD AND SHIELD TO BODY 350 VAC
OR 500 VDC. HOLD EACH TEST FOR 1 MINUTE. AC OR DC POTENTIAL CAN
BE USED WHEN TESTING CABLES. THERE WILL BE NO BREAKDOWN OR
FLASHOVER DURING THE TEST. WHEN PERFORMING HYPOT TEST AND THE
CABLE HAS NO SHIELDS DISREGARD ALL TESTING PERTAINING TO SHIELDS.

e e e o L e v e . e e S T e s e . e S B . o e s

e ey T e T . e e P it . A S i

D) INSULATION RESISTANCE TPIN-105 REV “EZ__ PASS 47 FAIL ____
IR > 1000 MEGOHMES AT 100 VDC,2 MINUTE HOLD MAXIMUM. TEST EACH
PIN, CONDUCTOR OR SHIELD TO ALL OTHER PINS, CONDUCTORS OR SHIELDS

AND BODIES.
EQUIPMENT USED CALIBRATED  CAL DUE
B) BEEPER NOT REQUIRED NOT REQUIRED
C) HYPOT T- 220 S—/6-25 S—/6-94
D) MEGOHMMETER T- 22 16-2-35 _4-2-94

TESTER MW " DATE _3-27-9¢

QUANTITY TESTED 3 Lfems

SERIAL NUMBERS VLo =

QTR54FMOD



X. Acknowledgments

This work was the result of research sponsored in part, by
the National Sea Grant College Program, NOAA, Department of
Commerce, under grant #NA56R60159 through the University of

New Hampshire/University of Maine Sea Grant College Program.

The AMP team would like to thank the following who

contributed to the success of this project:

Kenneth C. Baldwin Phd. Project advisor, UNH Durham, NH
The AMP team would like to express thanks to Dr.
Baldwin for his assistance in the completion of this
project. Dr. Baldwin on several coccasions met with the
design team in the initial stages of the BMP design and
through his efforts and knowledge of the project
requirements was able to direct the group to the proper
solution. The team also greatly appreciated the confidence
Dr. Baldwin showed in the team throughout the design and

fabrication of AMP.

Thomas Krasuski OE Graduate student, UNH Durham, NH
Tom donated a great deal of time to working with the
group in the electrical and computer software development

aspects of the project.

109



Gerald Sedor Phd.,PE UNH Professor, D.G. O'Brien connection
The group would like to express our appreciation to Dr.
Sedor and the employees of D.G. O’Brien for their generous
donation of time and hardware. D.G. O'Brien provided the
group with underwater cable connectors which were crucial to

the operation of the AMP deployment, use, and recovery.

David E Dunfee General Manager D.G. O'Brien

Mr. Dunfee provided support for the project with his
genercus donation of both materials and time. With his
consent, the group was able to obtain the proper equipment

to make AMP appear as a professional system.

Steve Christenson AIRMAR Technologies

The group would like to thank Mr. Christenson for his
time and generous efforts in sealing and potting of the
hydrophone mount used by the AMP system. The services

provided by AIRMAR were greatly appreciated.

Heilind Electronics
Heiland Electronics donated 1000 feet of six conductor-
3 twisted shielded pair cable. This cable donation saved

the group a great deal of money.

110



Jon Scott ME Graduate student;, UNH Durham, NH
John assisted the group in the purchasing of equipment.
The AMP team would like to thank him for his support. John
Scott’s quick turn over time helped expedite the purchasing
process.
Paul Lavoie Marine Diver Safety, UNH Durham, NH
Paul Lavoie provided the group with advice and also
provided pressure tests on the probe using the University’s
hyperbaric chamber. His support enabled the group to test
the system in-house in a controlled environment.
Robert Champlin, Supervisor, UNH Machine Shop, Durham, NH
Mr. Champlin provided the skilled machining required in
this design. His support and experience.provided the group
with both professionally machined hardware and skilled
advice.
Marine Programs & Ocean Engineering Department, UNH Durham, NH
The AMP team would like to thank these departments for
the use of their equipment and facilities'throughout the
duration of this project.
Adam Perkins, EE department technician, UNH Durham, NH

The AMP team appreciates Adam's patience and help in
use of test equipment and in hardware recommendations.

111



